福建省妇幼保健院为一家三级甲等医院,住院药房的药品种类多、数量大,药品管理的规范与否影响到病人的用药安全。据美国安全用药研究所(Institute for Safe Medication Practices,ISMP)统计,美国每年用药差错中25%是由药品名称...福建省妇幼保健院为一家三级甲等医院,住院药房的药品种类多、数量大,药品管理的规范与否影响到病人的用药安全。据美国安全用药研究所(Institute for Safe Medication Practices,ISMP)统计,美国每年用药差错中25%是由药品名称相似混淆引起,33%是由包装或标签相似混淆引起[1]。展开更多
建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性...建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.展开更多
文摘福建省妇幼保健院为一家三级甲等医院,住院药房的药品种类多、数量大,药品管理的规范与否影响到病人的用药安全。据美国安全用药研究所(Institute for Safe Medication Practices,ISMP)统计,美国每年用药差错中25%是由药品名称相似混淆引起,33%是由包装或标签相似混淆引起[1]。
文摘建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.