期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测
1
作者 李丹 罗娇娇 +2 位作者 孙光帆 唐建 黄烽云 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期68-75,共8页
考虑到输入信息和预测模型的不确定性对负荷预测结果的影响,本文提出一种基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测方法.通过条件变分自编码器生成指定天气因素预测值和日历特征条件下实际天气因素可能的多个随机样... 考虑到输入信息和预测模型的不确定性对负荷预测结果的影响,本文提出一种基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测方法.通过条件变分自编码器生成指定天气因素预测值和日历特征条件下实际天气因素可能的多个随机样本,以模拟天气预测信息的不确定性;构建GRU-S2S贝叶斯神经网络学习模型参数的分布特征,以反映预测模型的不确定性,并结合MC dropout技术获得多个可能的负荷预测值;遍历天气因素全部模拟样本,将预测模型输出的负荷预测值构成集合,并通过核密度估计获得预测时段内各时刻预测负荷服从的概率分布.实际算例结果表明,该方法在短期负荷概率预测中具有更高的分位数预测精度和更可靠稳定的区间预测结果. 展开更多
关键词 负荷概率预测 门控循环单元 贝叶斯神经网络 条件变分自编码
下载PDF
基于条件变分自编码器的熔铸炸药成型缺陷快速模拟和预测
2
作者 滕浩 李锡文 +1 位作者 王学林 胡于进 《火炸药学报》 EI CAS CSCD 北大核心 2024年第7期640-648,I0003,共10页
为了实现凝固缺陷的快速模拟和预测,提出了一种基于条件变分自编码器(CVAE)的熔铸炸药成型缺陷预测模型;以注液温度、冒口预热温度等工艺参数为条件,通过条件变分自编码器建立工艺参数与熔铸炸药缺陷的条件概率模型;采用多层神经网络和... 为了实现凝固缺陷的快速模拟和预测,提出了一种基于条件变分自编码器(CVAE)的熔铸炸药成型缺陷预测模型;以注液温度、冒口预热温度等工艺参数为条件,通过条件变分自编码器建立工艺参数与熔铸炸药缺陷的条件概率模型;采用多层神经网络和变分推断方法结合进行模型训练,实现了RHT和DNP基熔铸炸药凝固成型缺陷预测。结果表明,成功构建了熔铸炸药凝固过程数值模拟的条件概率分布,实现了基于仿真数据的RHT和DNP基熔铸炸药凝固缺陷预测;与有限元直接数值计算结果比较,CVAE算法计算缺陷位置的准确率可达到99%,计算时间小于2 s;CVAE在熔铸炸药缺陷概率分布建模上具有性能高、泛化性强的特点,能有效实现熔铸炸药成型缺陷的智能预测。 展开更多
关键词 条件变分自编码 CVAE 熔铸炸药 数值模拟 成型缺陷 多层神经网络 变分推断方法
下载PDF
基于条件变分自编码器的端到端情感语音合成方法 被引量:4
3
作者 张建明 彭锦涛 +1 位作者 贾洪杰 毛启容 《信号处理》 CSCD 北大核心 2023年第4期678-687,共10页
情感语音合成作为语音合成的一个重要分支,在人机交互领域得到了广泛的关注。如何获得更好的情感嵌入并有效地将其引入到语音合成声学模型中是目前主要存在的问题。表达性语音合成往往从参考音频中获得风格嵌入,但只能学习到风格的平均... 情感语音合成作为语音合成的一个重要分支,在人机交互领域得到了广泛的关注。如何获得更好的情感嵌入并有效地将其引入到语音合成声学模型中是目前主要存在的问题。表达性语音合成往往从参考音频中获得风格嵌入,但只能学习到风格的平均表示,无法合成显著的情感语音。该文提出一种基于条件变分自编码器的端到端情感语音合成方法(Conditional Duration-Tacotron,CD-Tacotron),该方法在Tacotron2模型的基础上进行改进,引入条件变分自编码器从语音信号中解耦学习情感信息,并将其作为条件因子,然后通过使用情感标签将其编码为向量后与其他风格信息拼接,最终通过声谱预测网络合成情感语音。在ESD数据集上的主观和客观实验表明,与目前主流的方法GST-Tacotron和VAE-Tacotron相比,该文提出的方法可以生成更具表现力的情感语音。 展开更多
关键词 情感语音合成 条件变分自编码 端到端 Tacotron
下载PDF
基于特征条件扩散模型的雷达回波外推算法
4
作者 吴其亮 王兴 +3 位作者 苗子书 叶威良 王思成 向磊 《科学技术与工程》 北大核心 2024年第22期9498-9509,共12页
随着外推时效的延长,回波强度愈发衰减,且对于强回波的预报性能迅速下降。这是当前雷达外推结果不准确的两个典型特征。为改善上述问题,提出了一种通过雷达回波帧驱动的扩散雷达外推算法(diffusion radar echo extrapolation,DiffREE)... 随着外推时效的延长,回波强度愈发衰减,且对于强回波的预报性能迅速下降。这是当前雷达外推结果不准确的两个典型特征。为改善上述问题,提出了一种通过雷达回波帧驱动的扩散雷达外推算法(diffusion radar echo extrapolation,DiffREE)。该算法利用条件编码模块将过去雷达回波帧的空间信息和时效信息深度融合,通过Transformer编码器自动提取回波的时空特征,并作为条件扩散模型的条件,驱动扩散模型重建当前雷达回波帧。实验结果表明,该方法可以生成高精度、高质量的雷达预报帧,较最好的基线算法在CSI、ETS、HSS和POD上分别提升42.2%、51.1%、49.8%和39.5%。 展开更多
关键词 深度学习 短时预报 雷达回波外推 扩散模型 条件编码
下载PDF
基于属性加权的独依赖条件概率编码方法
5
作者 梁祖鹏 李秋德 胡思贵 《运筹与模糊学》 2023年第1期74-87,共14页
包含分类属性和数值属性的混合数据广泛存在于真实世界采集的数据或实验数据,在挖掘或分析这类数据前,通常需要将它们处理(转换/嵌入/表示/编码)为高质量的数值数据。条件概率编码方法(以属性条件独立假设为前提)在大多数情况下能取得... 包含分类属性和数值属性的混合数据广泛存在于真实世界采集的数据或实验数据,在挖掘或分析这类数据前,通常需要将它们处理(转换/嵌入/表示/编码)为高质量的数值数据。条件概率编码方法(以属性条件独立假设为前提)在大多数情况下能取得不错的性能,但当它面对具有强属性关联的数据集时,性能并不理想。受独依赖值差度量的启发,将放宽属性条件独立的构想应用于条件概率编码方法。此外,还利用属性加权法来优化编码后的数据质量。融合上述这些方法,我们为混合数据的分类编码提出了一个属性加权的独依赖条件概率编码方法。实验结果表明,我们的编码方法可以显著性提高数据转换的质量,从而增强后续数据分析算法的性能。 展开更多
关键词 混合数据分类 条件概率编码 独依赖值差度量 属性加权
下载PDF
基于条件变分自编码的密码攻击算法 被引量:1
6
作者 段大高 赵振东 +1 位作者 梁少虎 韩忠明 《计算机应用研究》 CSCD 北大核心 2020年第3期821-823,837,共4页
使用密码猜测算法是评估用户密码强度和安全性的有效方法,提出一种基于条件变分自编码密码猜测算法PassCVAE。算法基于条件变分自编码模型,将用户个人信息作为条件特征,训练密码攻击模型。在编码器端,分别使用双向循环神经网络(GRU)和... 使用密码猜测算法是评估用户密码强度和安全性的有效方法,提出一种基于条件变分自编码密码猜测算法PassCVAE。算法基于条件变分自编码模型,将用户个人信息作为条件特征,训练密码攻击模型。在编码器端,分别使用双向循环神经网络(GRU)和文本卷积神经网络(TextCNN),实现对密码序列和用户个人信息的编码和特征的抽象提取;在解码器端使用两层GRU神经网络,实现对用户个人信息和密码数据隐编码的解码,生成密码序列。该算法可以有效地拟合密码数据的分布和字符组合规律,生成高质量的猜测密码数据。多组实验结果表明,提出的PassCVAE算法优于现有的主流密码猜测算法。 展开更多
关键词 条件变分自编码 密码猜测算法 密码攻击
下载PDF
风电和光伏随机场景生成的条件变分自动编码器方法 被引量:51
7
作者 王守相 陈海文 +1 位作者 李小平 舒欣 《电网技术》 EI CSCD 北大核心 2018年第6期1860-1867,共8页
随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史... 随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史数据对风电、光伏出力进行概率建模,进而进行抽样生成场景,模型准确性差、计算复杂度高。为简化随机场景生成步骤,提高生成效率及精度,提出了一种基于条件变分自动编码器(variational autoencoder,VAE)的风电光伏出力随机场景生成方法,较已有概率方法,所提方法可无监督地学习风电、光伏训练数据的时间、空间及波动性特点,并按条件高效地生成符合观测特点的数据,无需场景约简。通过在单一发电单元、多发电单元、指定标签场景3个场景的成功应用,验证了所提算法的有效性。 展开更多
关键词 随机场景分析 条件变分自动编码 深度学习 场景生成
下载PDF
条件变分时序图自编码器 被引量:2
8
作者 陈可佳 鲁浩 张嘉俊 《计算机研究与发展》 EI CSCD 北大核心 2020年第8期1663-1673,共11页
网络表示学习(也被称为图嵌入)是链接预测、节点分类、社区发现、图可视化等图任务的基础.现有大多数的图嵌入算法主要是针对静态图开发的,难以捕捉现实世界的网络随时间进化的动态特征.目前,针对动态网络表示学习方法的研究工作仍相对... 网络表示学习(也被称为图嵌入)是链接预测、节点分类、社区发现、图可视化等图任务的基础.现有大多数的图嵌入算法主要是针对静态图开发的,难以捕捉现实世界的网络随时间进化的动态特征.目前,针对动态网络表示学习方法的研究工作仍相对不足.提出了条件变分时序图自编码器(TS-CVGAE),可以同时学习动态网络的局部结构和随时间的演化模式.该方法首先改进了传统图卷积得到时序图卷积,并在条件变分自编码器的框架下使用时序图卷积对网络节点进行编码.训练结束后,条件变分自编码器的中间层就是最终的网络嵌入结果.实验结果表明,该方法在4个现实动态网络数据集上的链接预测表现均优于相关的静、动态网络表示学习方法. 展开更多
关键词 网络表示学习 条件变分自编码 动态网络 图卷积 链接预测
下载PDF
基于条件变分自编码器的井下配电室巡检行为检测 被引量:4
9
作者 党伟超 史云龙 +2 位作者 白尚旺 高改梅 刘春霞 《工矿自动化》 北大核心 2021年第12期98-105,共8页
现有井下配电室巡检行为检测方法的研究重点在于视频动作的分类,但在实际应用中,对于端到端的视频检测任务,不仅需要识别巡检动作的类别,还需要预测巡检动作发生的开始时间和结束时间。且现有基于监督学习的研究方法训练网络时需要标注... 现有井下配电室巡检行为检测方法的研究重点在于视频动作的分类,但在实际应用中,对于端到端的视频检测任务,不仅需要识别巡检动作的类别,还需要预测巡检动作发生的开始时间和结束时间。且现有基于监督学习的研究方法训练网络时需要标注视频的每一帧,存在数据集制作繁琐、训练时间较长等问题,基于弱监督学习的研究方法也依赖视频分类模型,导致在没有视频帧级别标注的条件下很难区分动作帧和背景帧。针对以上问题,提出了一种基于条件变分自编码器的弱监督井下配电室巡检行为检测模型。该模型主要由判别注意力模型和生成注意力模型2个部分组成,将井下配电室巡检行为检测分为巡检动作的分类和定位2种任务。首先利用特征提取模型分别提取出井下配电室监控视频的RGB特征与光流特征;然后将获取到的RGB特征与光流特征输入注意力模块中进行训练,得到特征帧的注意力,通过判别注意力模型得到软分类,根据注意力的得分情况判断出动作帧和背景帧;最后对判别注意力模型的输出进行后处理,输出视频中包含巡检动作的时间区间、动作标签及置信度,即完成了巡检动作的分类及定位。为了提高定位任务的精度,加入基于条件变分自编码器的生成注意力模型,利用条件变分自编码器与解码器的生成对抗对视频的潜在特征进行学习。利用井下配电室监控视频,将巡检行为分为站立检测、下蹲检测、来回走动、站立记录和坐下记录,制作了巡检行为数据集进行实验,结果表明:基于条件变分自编码器的巡检行为检测模型可同时完成巡检行为分类和定位任务,在THUMOS14数据集上mAP@0.5达到17.0%,在自制的巡检行为数据集上mAP@0.5达到24.0%,满足井下配电室巡检行为检测要求。 展开更多
关键词 煤矿供电 井下配电室 巡检行为检测 弱监督学习 巡检行为分类与定位 条件变分自编码 判别注意力 生成注意力
下载PDF
基于条件变分自编码器的射线样本生成算法 被引量:1
10
作者 朱军 杨军 +1 位作者 李凯 于文欣 《通信技术》 2022年第4期409-414,共6页
射线追踪数据样本的缺失是造成大规模多输入多输出(Massive Multiple-Input MultipleOutput,Massive MIMO)信道特征预测出现较多预测误差较高的用户的主要原因。为了降低高误差用户数及预测误差,提出了一种基于条件变分自编码器(Conditi... 射线追踪数据样本的缺失是造成大规模多输入多输出(Massive Multiple-Input MultipleOutput,Massive MIMO)信道特征预测出现较多预测误差较高的用户的主要原因。为了降低高误差用户数及预测误差,提出了一种基于条件变分自编码器(Conditional Variational AutoEncoder,CVAE)的射线样本生成算法来增添缺失区间的射线样本。仿真结果表明,基于所提出的算法在原有射线样本集中扩充新样本后,可将高预测误差用户数降低到原来的46.4%;完善训练集后的神经网络在降低得到信道幅值的时间开销的同时,将信道幅值预测精度提升了6.2%。 展开更多
关键词 大规模多输入多输出 三维信道模型 条件变分自编码 射线追踪
下载PDF
非数值化特征的条件概率区域划分(CZT)编码方法 被引量:1
11
作者 贺亮 徐正国 +1 位作者 李赟 沈超 《计算机应用研究》 CSCD 北大核心 2020年第5期1400-1405,共6页
非数值化特征经常出现在数据中,对其有效编码是采用机器学习模型解决问题的关键。针对目前被广泛使用的one-hot编码方法的编码结果具有较大的稀疏性,并且编码出的数值仍然没有明确的物理意义等问题,提出一种基于条件概率的区域划分编码... 非数值化特征经常出现在数据中,对其有效编码是采用机器学习模型解决问题的关键。针对目前被广泛使用的one-hot编码方法的编码结果具有较大的稀疏性,并且编码出的数值仍然没有明确的物理意义等问题,提出一种基于条件概率的区域划分编码算法CZT(conditional-probability-based zone transformation coding)。该方法首先对特征进行条件概率计算,并依据条件概率划分特征区域,按照区域内的联合条件概率进行编码;然后将CZT编码算法与one-hot算法进行对比分析,从理论上推导并证明CZT编码对特征的压缩率至少为每个特征取值空间的平均大小,同时证明经过CZT编码后的问题具有更简单的优化目标形式,有利于设计后续机器学习算法;最后通过采用相同结构的神经网络进行分类,在Titanic数据集下对比CZT算法和one-hot算法编码数据后对分类器性能的影响,结果表明CZT编码的数据的分类准确率和稳定性均有提升。 展开更多
关键词 深度学习 非数值化特征 特征工程 联合条件概率编码
下载PDF
基于条件变分自编码器的齿轮箱故障诊断 被引量:3
12
作者 王昱 尹爱军 《装备环境工程》 CAS 2020年第7期64-69,共6页
目的实现齿轮箱故障类型的智能识别诊断。方法针对传统故障诊断方法通用性不广、数据依赖强、泛化能力弱并需人工提取特征问题,提出一种基于条件变分自编码器的故障诊断方法。以故障类别概率分布为目标并将振动信号频谱作为条件,通过条... 目的实现齿轮箱故障类型的智能识别诊断。方法针对传统故障诊断方法通用性不广、数据依赖强、泛化能力弱并需人工提取特征问题,提出一种基于条件变分自编码器的故障诊断方法。以故障类别概率分布为目标并将振动信号频谱作为条件,通过条件变分自编码器,建立齿轮箱振动信号频谱到对应各故障下的条件概率模型,并通过多层神经网络结合变分推断方法进行训练优化,实现对齿轮箱各类型故障的高精度分类诊断。结果在仅有少量训练数据条件下,实现了准确的故障识别。结论条件变分自编码器在齿轮箱振动信号频谱概率分布建模上具有优异性能,对故障信号数据量的依赖低、泛化能力强,无需人工提取特征。能有效实现齿轮箱故障的智能分类诊断。 展开更多
关键词 条件变分自编码 齿轮箱 故障诊断 振动信号
下载PDF
大面积水深异常检测的条件变化自编码算法 被引量:1
13
作者 张瑞辰 边少锋 +1 位作者 刘雁春 李厚朴 《测绘学报》 EI CSCD 北大核心 2019年第9期1182-1189,共8页
针对大面积海底地形数据缺失或异常的复杂及多变性特点,结合条件变分自编码器(CVAE)与深度卷积生成对抗网络(DCGAN),构建了条件变分自编码生成对抗网络(CVAE-GAN)大面积海底伪地形的检测与剔除方法。本文方法利用条件变分自编码算法改... 针对大面积海底地形数据缺失或异常的复杂及多变性特点,结合条件变分自编码器(CVAE)与深度卷积生成对抗网络(DCGAN),构建了条件变分自编码生成对抗网络(CVAE-GAN)大面积海底伪地形的检测与剔除方法。本文方法利用条件变分自编码算法改变原有的样本分布,通过对训练样本的学习重新构建样本之间的分布规律,有效提高了高维到低维映射的稳定性;结合生成对抗网络,提高了整体算法的稳健性,最终得到较优的检测与剔除结果。采用水深格网数据进行试验,并与中值滤波法、趋势面滤波法进行比较。结果表明,本文方法在精度、稳定性及噪声稳健性方面有所提高,验证了本文方法在海底地形数据处理上具有可行性。 展开更多
关键词 水深测量异常值 数据处理 条件变分自编码 生成对抗网络 特征提取
下载PDF
一种基于条件变分自编码器的加密流量识别方法 被引量:1
14
作者 栗刚 孙中军 +1 位作者 翟江涛 戴跃伟 《计算机应用研究》 CSCD 北大核心 2020年第S01期301-303,共3页
传统模型在识别加密流量方面通常存在特征提取困难和没有考虑到样本类别不平衡的问题,针对此问题,提出了一种在类别不平衡条件下的基于条件变分自编码器的加密流量识别模型。首先,通过SMOTE算法平衡原始数据集,解决了由于样本类别不平... 传统模型在识别加密流量方面通常存在特征提取困难和没有考虑到样本类别不平衡的问题,针对此问题,提出了一种在类别不平衡条件下的基于条件变分自编码器的加密流量识别模型。首先,通过SMOTE算法平衡原始数据集,解决了由于样本类别不平衡造成模型欠拟合或过拟合的问题。其次,提取数据流前n个字节,并使用条件变分自动编码器模型自动提取分类特征隐层变量Z。最后,把m维的隐层变量Z输入基于遗传算法改进的随机森林分类器进行分类评估。实验表明,较现有的加密识别模型,所提方法不仅具有较快的收敛速度,而且在精确率、召回率和F1-measure评价指标上分别有较大的提高。 展开更多
关键词 加密流量 SMOTE 条件变分自动编码 遗传算法 随机森林
下载PDF
基于条件对抗自动编码器的跨年龄人脸合成
15
作者 程志康 孙锐 +1 位作者 孙琦景 张旭东 《计算机工程》 CAS CSCD 北大核心 2022年第6期304-313,共10页
跨年龄人脸合成是指通过已知特定年龄的人脸图像合成其他年龄段的人脸图像,在动漫娱乐、公共安全、刑事侦查等领域有广泛的应用。针对跨年龄人脸合成图像容易产生器官变形扭曲、人脸局部特征保持效果不佳等问题,提出一种基于条件对抗自... 跨年龄人脸合成是指通过已知特定年龄的人脸图像合成其他年龄段的人脸图像,在动漫娱乐、公共安全、刑事侦查等领域有广泛的应用。针对跨年龄人脸合成图像容易产生器官变形扭曲、人脸局部特征保持效果不佳等问题,提出一种基于条件对抗自动编码器的合成方法。通过在解码器结构中引入通道关注和空间关注模块,分别从通道域和空间域提取重要信息,使模型在训练过程中忽略背景等无关信息,聚焦人脸图像变化的区域,有效解决合成图像器官扭曲变形等问题。此外,设计一种多尺度特征损失网络,从多个尺度更深层次地约束人脸图像的局部结构特征,从而保持人脸合成过程中局部特征结构的稳定性。在UTKFace跨年龄人脸数据集上的实验结果表明,与CAAE方法相比,该方法有效避免了人脸器官变形扭曲问题,能够更好地保持人脸局部结构特征,具有较佳的人脸合成效果和细节保持能力。 展开更多
关键词 跨年龄人脸合成 条件对抗自动编码 通道关注模块 空间关注模块 多尺度特征损失网络
下载PDF
结合多注意力和条件变分自编码器的宋词生成模型 被引量:1
16
作者 梁骁 黄文明 +2 位作者 姚俊 温雅媛 邓珍荣 《广西科学》 CAS 北大核心 2022年第2期308-315,共8页
现有的诗词生成方法忽略了风格的重要性。另外,由于宋词大部分词牌词句较多,逐句生成宋词的过程中容易产生上下文缺乏连贯性的现象,在上下文连贯性方面仍存在提升空间。针对这两个问题,在编码解码的文本生成框架基础上,引入自注意力机... 现有的诗词生成方法忽略了风格的重要性。另外,由于宋词大部分词牌词句较多,逐句生成宋词的过程中容易产生上下文缺乏连贯性的现象,在上下文连贯性方面仍存在提升空间。针对这两个问题,在编码解码的文本生成框架基础上,引入自注意力机制的句子表示算法计算多注意力权重矩阵,用于提取词句的多种重要语义特征,让模型更多地关注上文的显著信息来提高上下文连贯性。引入条件变分自编码器(CVAE)将每条宋词数据转化为隐空间中不同风格特征的高维高斯分布,从各自的分布中采样隐变量来控制宋词的风格。由于自构建的宋词语料库缺少完整风格分类标签,使用具有风格标签的宋词微调BERT模型,将其作为风格分类器标注全部的宋词数据。在上述关键技术的基础上实现了宋词生成模型,生成上下文连贯的婉约词以及豪放词。通过与其他4种基准方法进行对比实验,结果表明引入自注意力机制的句子表示算法和条件变分自编码器,在上下文连贯性和风格控制方面有一定的提升。 展开更多
关键词 条件变分自编码 宋词风格 宋词生成 Bi-GRU 自注意力机制
下载PDF
基于改进条件变分自编码器的入侵检测研究
17
作者 朱琼 袁永晖 田春岐 《计算机科学与应用》 2021年第6期1637-1648,共12页
现有的入侵检测方法大多集中于提高整体检测率,而应用于不平衡样本集上,传统方法往往在少数类攻击样本的识别上存在识别准确率低、误报率高的问题。因此,提出了一个结合入侵检测条件变分自编码器(Intrusion Detection Conditional Varia... 现有的入侵检测方法大多集中于提高整体检测率,而应用于不平衡样本集上,传统方法往往在少数类攻击样本的识别上存在识别准确率低、误报率高的问题。因此,提出了一个结合入侵检测条件变分自编码器(Intrusion Detection Conditional Variational Auto Encoder, IDCVAE)和深度信念网络(Deep Belief Nets, DBN)的入侵检测方法。该方法首先利用IDCVAE学习数据的稀疏表示,然后使用其解码器部分扩充少数类样本,解决样本不均衡问题。最后利用DBN对平衡后的新数据集进行特征提取和分类。实验结果表明,本文的方法在保持整体检测率较高的同时,有效地提高了少数类攻击的检测率及误报率。 展开更多
关键词 入侵检测 条件变分自编码 生成网络 过采样 深度信念网络
下载PDF
部分线索诱发遗忘效应的持久性:项目价值的作用
18
作者 刘湍丽 张雅静 +2 位作者 周菘 邢敏 白学军 《心理学报》 CSSCI CSCD 北大核心 2024年第1期15-28,共14页
高价值项目通常比低价值项目识记得更好。目前,尚不清楚项目价值会如何影响部分线索效应。将部分线索范式与价值导向记忆任务相结合(实验1),并进一步操纵编码条件(1-学,2-学-测)和测验时程(即时测验,最终测验)(实验2),考察以不同价值的... 高价值项目通常比低价值项目识记得更好。目前,尚不清楚项目价值会如何影响部分线索效应。将部分线索范式与价值导向记忆任务相结合(实验1),并进一步操纵编码条件(1-学,2-学-测)和测验时程(即时测验,最终测验)(实验2),考察以不同价值的项目作为部分线索对不同价值测验项目再认的影响及其持久性。结果发现:线索项目和测验项目的价值均显著影响部分线索效应。具体而言:在1-学条件下,高价值线索使得高、低价值测验项目的再认受损均从即时测验持续到了最终测验,低价值线索仅使高价值测验项目在即时测验中受损。而在2-学-测条件下,仅高价值线索使得低价值测验项目的再认受损从即时测验持续到了最终测验。研究结果表明:项目价值影响部分线索诱发遗忘效应的强度及持久性,在从项目关联编码这一角度界定部分线索对记忆提取的作用时,还需考虑项目价值的作用。 展开更多
关键词 部分线索效应 项目价值 编码条件 测验时程
下载PDF
基于变分自编码器的多维退化数据生成方法 被引量:1
19
作者 林焱辉 李春波 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第10期2617-2627,共11页
数据驱动的剩余使用寿命(RUL)预测方法不依赖于复杂的物理模型,可以直接利用设备历史运行数据与当前监测数据对设备RUL进行预测,对制定合理的维修策略,降低设备的维护成本具有重要意义。但是数据驱动的RUL预测方法依赖于大量历史数据,... 数据驱动的剩余使用寿命(RUL)预测方法不依赖于复杂的物理模型,可以直接利用设备历史运行数据与当前监测数据对设备RUL进行预测,对制定合理的维修策略,降低设备的维护成本具有重要意义。但是数据驱动的RUL预测方法依赖于大量历史数据,在数据不足时,尤其是多维退化数据,模型难以取得良好的预测效果。针对这一问题,提出一种多维退化数据生成方法,所提方法构建了一种全局优化模型,以条件变分自编码器作为生成模型,提取多维退化数据特征并生成相似数据扩充RUL预测模型训练集,利用长短时记忆网络作为RUL预测模型,所提方法能够通过RUL预测模型更新生成模型的参数提高模型的效果,同时利用更新后的生成模型提高剩余寿命预测模型在退化数据不足情况下的效果。使用航空发动机退化数据进行了案例验证,通过对比未加入生成数据训练得到的RUL预测模型与加入生成数据训练得到的RUL预测模型的表现,验证了所提方法在解决RUL预测模型训练数据不足方面的优越性。 展开更多
关键词 剩余寿命预测 变分自编码 条件变分自编码 数据生成 数据不足
下载PDF
DCVAE与DPC融合的网络入侵检测模型研究 被引量:1
20
作者 李登辉 葛丽娜 +2 位作者 王哲 樊景威 张壕 《小型微型计算机系统》 CSCD 北大核心 2024年第4期998-1006,共9页
入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变... 入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变分自编码器能够生成指定类别样本的能力,学习正常网络流量特征的隐空间表示并计算其重建误差,增加其与未知攻击间的特征区分度,并使用密度峰值聚类算法求出正常网络流量重建误差的分布,提高未知攻击识别率.实验结果表明,在NSL-KDD数据集中与当前流行的入侵检测模型相比,模型的分类准确率可以达到97.08%,具有更高的未知攻击检测能力,面对当前复杂网络环境,有更强的入侵检测性能. 展开更多
关键词 入侵检测 判别条件变分自编码 密度峰值聚类算法 未知攻击识别 细粒度攻击分类
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部