An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen...An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.展开更多
Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning m...Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.展开更多
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de...It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.展开更多
文摘An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
基金the Foundation of Graduate Innovation Center in NUAA(kfjj20190707).
文摘Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.
基金Projects(41001260,61173122,61573380) supported by the National Natural Science Foundation of ChinaProject(11JJ5044) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.