期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
整合策略在高中语文读本学习中的运用
1
作者 吴清锋 《浙江教学研究》 2006年第2期3-4,共2页
新修订的高中语文读本作为一种带“必修”性质的语文读物,其编选上的整合特征要求与语文教科书配套使用。整合的特征决定了整合策略在读本学习中的可行性。这种策略的具体内容包括三种方法:拓展延伸法、丰富求全法和理论框架法。整合... 新修订的高中语文读本作为一种带“必修”性质的语文读物,其编选上的整合特征要求与语文教科书配套使用。整合的特征决定了整合策略在读本学习中的可行性。这种策略的具体内容包括三种方法:拓展延伸法、丰富求全法和理论框架法。整合策略的实施必将给读本学习带来极大的帮助。 展开更多
关键词 语文读本 编选特征 整合策略
下载PDF
A SEMI-OPEN-LOOP CODING MODE SELECTION ALGORITHM BASED ON EFM AND SELECTED AMR-WB+ FEATURES
2
作者 Hong Ying Zhao Shenghui Kuang Jingming 《Journal of Electronics(China)》 2009年第2期274-278,共5页
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio... To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm. 展开更多
关键词 Speech/Audio Semi-open-loop coding mode selection Features selection Energy Flat-ness Measurement(EFM)
下载PDF
Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder 被引量:9
3
作者 Zong-feng QI Qiao-qiao LIU +1 位作者 Jun WANG Jian-xun LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第12期1991-2000,共10页
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is... The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer. 展开更多
关键词 Battle damage assessment Improved Kullback-Leibler divergence sparse autoencoder Structural optimization Feature selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部