To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio...To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.展开更多
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is...The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.展开更多
文摘To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.
基金Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)
文摘The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.