A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic...A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.展开更多
The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this ...The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.展开更多
基金the Natural Science Foundation of Heilongjiang Province(A009).
文摘A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.
基金supported by the National Natural Science Foundation of China(Grant Nos.40872170,40902077,41072196)Doctoral Program Foundation of Higher Education of China(Grant No.20090061110054)+2 种基金Jilin University's 985 Project(Grant No.450070021107)Graduate Innovation Fund of Jilin University(Grant No.20121073)Basic Research of Jilin University(Grant No.421032184424)
文摘The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.