The effect of the fracture distribution on CO 2 injection into coal seams was studied with a heterogeneous model having dual porosity to represent both the primary medium (the coal matrix) and the secondary medium (th...The effect of the fracture distribution on CO 2 injection into coal seams was studied with a heterogeneous model having dual porosity to represent both the primary medium (the coal matrix) and the secondary medium (the fractures) under variable stress conditions. A numerical generation method and a digital image processing method were used to model the heterogeneous fracture distribution in the coal. The model solutions demonstrate that: (1) the fractures are the main channel for gas flow and their distribution has an important impact on the gas injection rate; (2) the fractures only affect the injection rate of CO 2 into the coal but not the final storage amount; (3) when gas is injected into coal the fractures will first expand and then close due to the changing effective stresses and the adsorption induced swelling of coal grains. This fully coupled dual-porosity model with a heterogeneous fracture distribution provides a way to predict the CO 2 injection into a coal seam.展开更多
Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic ...Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic waves attenuation caused by the internal structure of rock mass,and in particular,the internal geometry of the distribution of fluid-filled openings Systematic research on the effect of crack parameters,such as crack density,crack aspect ratio(the ratio of crack thickness to crack diameter),pore fluid properties(particularly pore fluid velocity),VP/VS ratio of the matrix material and seismic wave frequency on attenuation anisotropy has been conducted based on Hudson's crack theory.The result shows that the crack density,aspect ratio,material filler,seismic wave frequency,and P-wave and shear wave velocity in the background of rock mass,and especially frequency has great effect on attenuation curves.Numerical research can help us know the effect of crack parameters and is a good supplement for laboratory modeling.However,attenuation is less well understood because of the great sensitivity of attenuation to details of the internal geometry.Some small changes in the characteristics of pore fluid viscosity,pore fluids containing gas and liquid phases and pore fluids containing clay can each alter attenuation coefficients by orders of magnitude.Some parameters controlling attenuation are therefore necessary to make reasonable estimations,and anisotropic attenuation is worth studying further.展开更多
Rocks in earth's crust usually contain both pores and cracks. This phenomenon significantly affects the propagation of elastic waves in earth. This study describes a unified elastic wave theory for porous rock media ...Rocks in earth's crust usually contain both pores and cracks. This phenomenon significantly affects the propagation of elastic waves in earth. This study describes a unified elastic wave theory for porous rock media containing cracks. The new theory extends the classic Biot's poroelastic wave theory to include the effects of cracks. The effect of cracks on rock's elastic prop- erty is introduced using a crack-dependent dry bulk modulus. Another important frequency-dependent effect is the "squirt flow" phenomenon in the cracked porous rock. The analytical results of the new theory demonstrate not only reduction of elas- tic moduli due to cracks but also significant elastic wave attenuation and dispersion due to squirt flow. The theory shows that the effects of cracks are controlled by two most important parameters of a cracked solid: crack density and aspect ratio. An appealing feature of the new theory is its maintenance of the main characteristics of Biot's theory, predicting the characteristics of Blot's slow wave and the effects of permeability on elastic wave propagation. As an application example, the theory cor- rectly simulates the change of elastic wave velocity with gas saturation in a field data set. Compared to Biot theory, the new theory has a broader application scope in the measurement of rock properties of earth's shallow crust using seismic/acoustic waves.展开更多
基金supported by the Chinese National Science Foundation (51104147)the Fundamental Research Funds for the Central Universities (2011QNA17)+1 种基金National Basic Research Program of China (2010CB226800)State Key Laboratory for Geo-mechanics and Deep Underground Engineering in China
文摘The effect of the fracture distribution on CO 2 injection into coal seams was studied with a heterogeneous model having dual porosity to represent both the primary medium (the coal matrix) and the secondary medium (the fractures) under variable stress conditions. A numerical generation method and a digital image processing method were used to model the heterogeneous fracture distribution in the coal. The model solutions demonstrate that: (1) the fractures are the main channel for gas flow and their distribution has an important impact on the gas injection rate; (2) the fractures only affect the injection rate of CO 2 into the coal but not the final storage amount; (3) when gas is injected into coal the fractures will first expand and then close due to the changing effective stresses and the adsorption induced swelling of coal grains. This fully coupled dual-porosity model with a heterogeneous fracture distribution provides a way to predict the CO 2 injection into a coal seam.
基金sponsored by Special Fund for Basic Research of Institute of Geology,CEA(Grant No.DF-IGCEA-0607-1-1)National Natural Science Foundation of China(41104026)the Special Fund for Basic Scientific Research of Institute of Crustal Dynamics,CEA(Grant No.ZDJ2010-01 and ZDJ2009-11)
文摘Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic waves attenuation caused by the internal structure of rock mass,and in particular,the internal geometry of the distribution of fluid-filled openings Systematic research on the effect of crack parameters,such as crack density,crack aspect ratio(the ratio of crack thickness to crack diameter),pore fluid properties(particularly pore fluid velocity),VP/VS ratio of the matrix material and seismic wave frequency on attenuation anisotropy has been conducted based on Hudson's crack theory.The result shows that the crack density,aspect ratio,material filler,seismic wave frequency,and P-wave and shear wave velocity in the background of rock mass,and especially frequency has great effect on attenuation curves.Numerical research can help us know the effect of crack parameters and is a good supplement for laboratory modeling.However,attenuation is less well understood because of the great sensitivity of attenuation to details of the internal geometry.Some small changes in the characteristics of pore fluid viscosity,pore fluids containing gas and liquid phases and pore fluids containing clay can each alter attenuation coefficients by orders of magnitude.Some parameters controlling attenuation are therefore necessary to make reasonable estimations,and anisotropic attenuation is worth studying further.
文摘Rocks in earth's crust usually contain both pores and cracks. This phenomenon significantly affects the propagation of elastic waves in earth. This study describes a unified elastic wave theory for porous rock media containing cracks. The new theory extends the classic Biot's poroelastic wave theory to include the effects of cracks. The effect of cracks on rock's elastic prop- erty is introduced using a crack-dependent dry bulk modulus. Another important frequency-dependent effect is the "squirt flow" phenomenon in the cracked porous rock. The analytical results of the new theory demonstrate not only reduction of elas- tic moduli due to cracks but also significant elastic wave attenuation and dispersion due to squirt flow. The theory shows that the effects of cracks are controlled by two most important parameters of a cracked solid: crack density and aspect ratio. An appealing feature of the new theory is its maintenance of the main characteristics of Biot's theory, predicting the characteristics of Blot's slow wave and the effects of permeability on elastic wave propagation. As an application example, the theory cor- rectly simulates the change of elastic wave velocity with gas saturation in a field data set. Compared to Biot theory, the new theory has a broader application scope in the measurement of rock properties of earth's shallow crust using seismic/acoustic waves.