The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From th...The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by thi...In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.展开更多
We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodi...We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodinger equation is obtained by using the method of algebraic dynamics. Based on the time-dependent analytical solution, we further study the entanglement evolution between the two coupled spins for different initial states, and find that the entanglement is determined by the coefficients of the initial state and the coupling constant J of the system.展开更多
We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition...We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.展开更多
Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit sy...Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.展开更多
The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structur...The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structure of quantum states, but also on the exchange couplings with environment. The decoherence-free subspaces have been identified by using the linear entropy.展开更多
Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipat...Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-rnotion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.展开更多
The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum ...The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations.展开更多
A natural picture of how meaning and truth are determined seems to be undermined by a rather strange semantic phenomenon structurally similar to quantum entanglement. This paper describes the phenomenon of semantic en...A natural picture of how meaning and truth are determined seems to be undermined by a rather strange semantic phenomenon structurally similar to quantum entanglement. This paper describes the phenomenon of semantic entanglement, compares the semantic with the quantum mechanical case and explores the prospects for disentanglement.展开更多
A robust scheme is proposed for producing maximally entangled states for many trapped ions in thermal motion. In the scheme the ions are simultaneously illuminated by two standing-wave laser fields. During the operati...A robust scheme is proposed for producing maximally entangled states for many trapped ions in thermal motion. In the scheme the ions are simultaneously illuminated by two standing-wave laser fields. During the operation the phases of the lasers are inverted, which not only cancels the vibration-dependent parts in the evolution operator, but also suppresses direct off-resonant coupling of the internal states. Thus, our scheme allows the production of entanglement for hot trapped ions with laser fields of high intensity, which makes the entanglement speed extremely high.展开更多
For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in...For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in the coordinate representation and the momentum representation. The 〈τ| representation can simplify some calculations for obtaining energy level of two-dimensional oscillator in noncommutative space.展开更多
In this paper, the theoretical investigation of remote preparation of an entangledstate is studied in nonideal conditions. Our studies include two parts. In the first part, we consider the remote state preparation (...In this paper, the theoretical investigation of remote preparation of an entangledstate is studied in nonideal conditions. Our studies include two parts. In the first part, we consider the remote state preparation (RSP) of an entangled state through two equally noisy quantum channel states, namely, a mixture of Bell states. Studies show there is a particular mixed-state channel for which all pure entangled states remain entangled after this inexact RSP. In the second part, we suppose that noises which quantum channels suffer from can be expressed as the Lindblad operators. The master equation of the system can be expressed in the Lindblad form. Through solving the master equation, we calculate the fidelity as a function of decoherence rates and parameters of the state to be prepared. For a given entangled state, we investigate the influence of different types of noises on the fidelity.展开更多
We present a scheme of preparing the tripartite W state among three cavitymodes of radiation field inside high-Q superconducting cavities. Our scheme is based on theinteraction of a four-level atom with the cavity Gel...We present a scheme of preparing the tripartite W state among three cavitymodes of radiation field inside high-Q superconducting cavities. Our scheme is based on theinteraction of a four-level atom with the cavity Geld for precalculated interaction times with everymode.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 60433050
文摘The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.
基金National Natural Science Foundation of China under Grant No.10374068the Doctoral Education Fund of the Ministry of Education of China under Grant No.20050610011
文摘We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodinger equation is obtained by using the method of algebraic dynamics. Based on the time-dependent analytical solution, we further study the entanglement evolution between the two coupled spins for different initial states, and find that the entanglement is determined by the coefficients of the initial state and the coupling constant J of the system.
文摘We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.
基金National Natural Science Foundation of China under Grant Nos.10325521 and 60433050the 973 Program under Grant No.2006CB921106
文摘Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.
基金The project supported by the State Key Basic Research Programme of China under Grant No. 2001CB309310 and National Natural Science Foundation of China under Grant Nos. 60173047 and 60573008
文摘The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structure of quantum states, but also on the exchange couplings with environment. The decoherence-free subspaces have been identified by using the linear entropy.
基金supported by the Ministry of Science and Technology of China(No.2016YFA0400900 and No.2016YFA0200600)the National Natural Science Foundation of China(No.21573202 and No.21633006)the Fundamental Research Funds for the Central Universities(No.2340000074)
文摘Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-rnotion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.
文摘The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations.
文摘A natural picture of how meaning and truth are determined seems to be undermined by a rather strange semantic phenomenon structurally similar to quantum entanglement. This paper describes the phenomenon of semantic entanglement, compares the semantic with the quantum mechanical case and explores the prospects for disentanglement.
文摘A robust scheme is proposed for producing maximally entangled states for many trapped ions in thermal motion. In the scheme the ions are simultaneously illuminated by two standing-wave laser fields. During the operation the phases of the lasers are inverted, which not only cancels the vibration-dependent parts in the evolution operator, but also suppresses direct off-resonant coupling of the internal states. Thus, our scheme allows the production of entanglement for hot trapped ions with laser fields of high intensity, which makes the entanglement speed extremely high.
基金The project supported by Specialized Research Fund for the Doctorial Progress of Higher Education (SRFDP) under Grant No. 2004035819
文摘For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in the coordinate representation and the momentum representation. The 〈τ| representation can simplify some calculations for obtaining energy level of two-dimensional oscillator in noncommutative space.
基金The project partially supported by National Natural Science Foundation of China under Grant Nos. 90103026 and 60478029 . We would like to acknowledge useful discussions with Prof. Wu Ying.
文摘In this paper, the theoretical investigation of remote preparation of an entangledstate is studied in nonideal conditions. Our studies include two parts. In the first part, we consider the remote state preparation (RSP) of an entangled state through two equally noisy quantum channel states, namely, a mixture of Bell states. Studies show there is a particular mixed-state channel for which all pure entangled states remain entangled after this inexact RSP. In the second part, we suppose that noises which quantum channels suffer from can be expressed as the Lindblad operators. The master equation of the system can be expressed in the Lindblad form. Through solving the master equation, we calculate the fidelity as a function of decoherence rates and parameters of the state to be prepared. For a given entangled state, we investigate the influence of different types of noises on the fidelity.
文摘We present a scheme of preparing the tripartite W state among three cavitymodes of radiation field inside high-Q superconducting cavities. Our scheme is based on theinteraction of a four-level atom with the cavity Geld for precalculated interaction times with everymode.