The scale of fluctuation is one of the vital parameters for the application of random field theory to the reliability analysis of geotechnical engineering. In the present study, the fluctuation function method and wei...The scale of fluctuation is one of the vital parameters for the application of random field theory to the reliability analysis of geotechnical engineering. In the present study, the fluctuation function method and weighted curve fitting method were presented to make the calculation more simple and accurate. The vertical scales of fluctuation of typical layers of Tianjin Port were calculated based on a number of engineering geotechnical investigation data, which can be guidance to other projects in this area. Meanwhile, the influences of sample interval and type of soil index on the scale of fluctuation were analyzed, according to which, the principle of determining the scale of fluctuation when the sample interval changes was defined. It can be obtained that the scale of fluctuation is the basic attribute reflecting spatial variability of soil, therefore, the scales of fluctuation calculated according to different soil indexes should be basically the same. The non-correlation distance method was improved, and the principle of determining the variance reduction function was also discussed.展开更多
Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtai...Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtain the necessary and sufficient condition of Baaj and Skandalis’ main theorem, i.e.V has a Kac-system if and only if the linear closed space of the product of the above two algebras is the compact operator space; with this condition the above algebras are also quantum groups.展开更多
The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was e...The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.展开更多
基金Supported by the National Natural Science Foundation of China(No.41272323)Tianjin Natural Science Foundation(No.13JCZDJC 35300)
文摘The scale of fluctuation is one of the vital parameters for the application of random field theory to the reliability analysis of geotechnical engineering. In the present study, the fluctuation function method and weighted curve fitting method were presented to make the calculation more simple and accurate. The vertical scales of fluctuation of typical layers of Tianjin Port were calculated based on a number of engineering geotechnical investigation data, which can be guidance to other projects in this area. Meanwhile, the influences of sample interval and type of soil index on the scale of fluctuation were analyzed, according to which, the principle of determining the scale of fluctuation when the sample interval changes was defined. It can be obtained that the scale of fluctuation is the basic attribute reflecting spatial variability of soil, therefore, the scales of fluctuation calculated according to different soil indexes should be basically the same. The non-correlation distance method was improved, and the principle of determining the variance reduction function was also discussed.
文摘Let V be a multiplicative unitary operator on a separable Hilbert spaceH, then there are two subalgebras ofB( H) denoted byA( V) and ?( V), respectively, which correspond to V. If V satisfiesV 2 =I, then we will obtain the necessary and sufficient condition of Baaj and Skandalis’ main theorem, i.e.V has a Kac-system if and only if the linear closed space of the product of the above two algebras is the compact operator space; with this condition the above algebras are also quantum groups.
基金supported by the National Basic Research Program of China ("973" Project)(Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210,11072188)
文摘The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.