Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. B...Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.展开更多
Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynami...Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.展开更多
Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi...Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.展开更多
Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulat...Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.展开更多
The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and ...The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and without boundary layer suction were comparatively studied at several suction flow rates.The results showed that boundary layer suction dramatically improved the flow behavior within the flow passage.Moreover,higher loading over the whole blade height,lower total pressure loss,and higher passage throughflow were achieved with a relatively small amount of boundary layer removal.The integration of curved blade and boundary layer suction contributed to better aerodynamic performance than the cascades with only curved blade or boundary layer suction used,and the more favorable effect resulted from the weakening of the three dimensional effects of the boundary layer close to the endwalls.展开更多
The atomic inversion dynamics in the mode-mode competing system is studied bymeans of fully quantum theory. A general solution to the Schroedinger equation of this system isobtained. The influence of the relative comp...The atomic inversion dynamics in the mode-mode competing system is studied bymeans of fully quantum theory. A general solution to the Schroedinger equation of this system isobtained. The influence of the relative competing strength between the atom and the two-mode Geld onthe atomic inversion is disccussed. We show that the presence of the mode-mode competition canresult in periodical collapses-revivals of the atomic inversion.展开更多
To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,g...To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.展开更多
Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. ...Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.展开更多
A contraction-expansion helical mixer which combines several features, viz. helical pipes for induction of secondary flows and sudden expansion and contraction array tor expansion vortices, has been designed to en- ha...A contraction-expansion helical mixer which combines several features, viz. helical pipes for induction of secondary flows and sudden expansion and contraction array tor expansion vortices, has been designed to en- hance flow mixing. A fast competitive-consecutive diazo coupling reaction is used to test the mixing efficiency of contraction-expansion helical mixer. Furthermore, an image processing technique is applied for data visualization and monitoring the extent of mixing. The mixing performance is found to be superior in comparison to the regular helical mixer in the range of Reynolds number from 170 to 1540. Moreover, the mixing time of contraction-expansion helical mixer was found to be reduced by more than 25% compared to the regular helical pipe. Finally, a simple correlation is proposed for predicting the mixing time.展开更多
The effects of a three-dimensional tapered diffuser vane on the flow field and noise radiated from a centrifugal compressor are investigated by both CFD analyses and experiments. Tapered diffuser vanes are very useful...The effects of a three-dimensional tapered diffuser vane on the flow field and noise radiated from a centrifugal compressor are investigated by both CFD analyses and experiments. Tapered diffuser vanes are very useful not only for the reduction of the interaction tone noise but also for the improvement of the pressure recovery characteristics within the diffuser passage. By using tapered diffuser vanes, the interaction area between the impeller-discharge flow and diffuser vanes becomes small, and then the noise level of the discrete tone can be reduced remarkably as a result. Furthermore, by utilizing the visualization technique of vortical structures based on the CFD results, the scale of vortex shedding leaving from the leading edge of the diffuser vanes is found to be contracted and a tendency for the turbulence level to decrease is observed. This may be the cause of the attenuation of broadband noise components. The secondary flow, which is considered to be an obstruction of diffuser pressure recovery, can also be suppressed by the tapered diffuser vanes, and the pressure decrease observed in the throat part of the diffuser passage is further reducible.展开更多
In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the reso...In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the resonance characteristics of a Helmholtz resonator-type combustion chamber were investigated using large-eddy simulations (LES), to understand better the flow effects in the chamber and to localize the dissipation. In this paper the results of the LES are presented, which show good agreement with the experiments. The comparison of the LES study with the experiments sheds light on the significant role of the wall roughness in the exhaust gas pipe.展开更多
This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predi...This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predicted by an ARI standard 540 map-based compressor model and verified by a semi-open drying heat pump system constructed for this purpose. A comparison of the experimental data with the predicted data proved that the new scroll compressor used in the drying heat pump works well, can supply a wide range of condensing temperatures (30--80℃) (without auxiliary heating), and has a minimum coeffi- cient of performance (COP) above 2.0, even in the worst condition.展开更多
Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of...Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of post stall transients in axial compression systems. This approximation leads to a set ofthree simultaneous nonlinear first order partial differential equations. The further investigation of poststall behavior for different response modes of instabilities (rotating stall and/or surge), recoverability,prestall period during stall inception, and the effect of compression system parameters on them canbe carried out by this model and has been discussed in detail in the present paper. It has been foundthat stall inception exhibits a large prestall period in the region with small slope of compressor characteristic, and in this region, final throttle setting, compressor characteristic and time-lag parametershave a strong influence on the period. The inertia parameters of blade rows have a strong influenceon the recoverability of compression systems and the blockage of stall cell at recovery point. Somequalitative comparisons with available experimental results and experience are made, and it shows thatthe proposed model is very simple and reliable.展开更多
Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-phot...Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-photon spin-orbit entanglement, we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding. In our proposed scheme, we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence, which is encoded multiple spin states for secret shares transmitted to participants. We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.展开更多
基金The authors would like to acknowledge the support from Project“973”of the State Key Fundamental Research under grant G1998030415.
文摘Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.
基金Key Project in National Science & Technology Pillar Program,China(No.2007BAE41B04)
文摘Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.201822011)the National Key R&D Program of China(No.2018YFC1405900)+1 种基金the National Natural Science Foundation of China(Nos.41674118 and 41574105)the National Science and Technology Major Project(No.2016ZX05027002)。
文摘Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.
文摘Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50646021).
文摘The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and without boundary layer suction were comparatively studied at several suction flow rates.The results showed that boundary layer suction dramatically improved the flow behavior within the flow passage.Moreover,higher loading over the whole blade height,lower total pressure loss,and higher passage throughflow were achieved with a relatively small amount of boundary layer removal.The integration of curved blade and boundary layer suction contributed to better aerodynamic performance than the cascades with only curved blade or boundary layer suction used,and the more favorable effect resulted from the weakening of the three dimensional effects of the boundary layer close to the endwalls.
文摘The atomic inversion dynamics in the mode-mode competing system is studied bymeans of fully quantum theory. A general solution to the Schroedinger equation of this system isobtained. The influence of the relative competing strength between the atom and the two-mode Geld onthe atomic inversion is disccussed. We show that the presence of the mode-mode competition canresult in periodical collapses-revivals of the atomic inversion.
文摘To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.
文摘Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.
基金Supported by the National Key Technology R&D Program(2011BAE07B01)the National Natural Science Foundation of China(20836001)
文摘A contraction-expansion helical mixer which combines several features, viz. helical pipes for induction of secondary flows and sudden expansion and contraction array tor expansion vortices, has been designed to en- hance flow mixing. A fast competitive-consecutive diazo coupling reaction is used to test the mixing efficiency of contraction-expansion helical mixer. Furthermore, an image processing technique is applied for data visualization and monitoring the extent of mixing. The mixing performance is found to be superior in comparison to the regular helical mixer in the range of Reynolds number from 170 to 1540. Moreover, the mixing time of contraction-expansion helical mixer was found to be reduced by more than 25% compared to the regular helical pipe. Finally, a simple correlation is proposed for predicting the mixing time.
文摘The effects of a three-dimensional tapered diffuser vane on the flow field and noise radiated from a centrifugal compressor are investigated by both CFD analyses and experiments. Tapered diffuser vanes are very useful not only for the reduction of the interaction tone noise but also for the improvement of the pressure recovery characteristics within the diffuser passage. By using tapered diffuser vanes, the interaction area between the impeller-discharge flow and diffuser vanes becomes small, and then the noise level of the discrete tone can be reduced remarkably as a result. Furthermore, by utilizing the visualization technique of vortical structures based on the CFD results, the scale of vortex shedding leaving from the leading edge of the diffuser vanes is found to be contracted and a tendency for the turbulence level to decrease is observed. This may be the cause of the attenuation of broadband noise components. The secondary flow, which is considered to be an obstruction of diffuser pressure recovery, can also be suppressed by the tapered diffuser vanes, and the pressure decrease observed in the throat part of the diffuser passage is further reducible.
文摘In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the resonance characteristics of a Helmholtz resonator-type combustion chamber were investigated using large-eddy simulations (LES), to understand better the flow effects in the chamber and to localize the dissipation. In this paper the results of the LES are presented, which show good agreement with the experiments. The comparison of the LES study with the experiments sheds light on the significant role of the wall roughness in the exhaust gas pipe.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA10A510)
文摘This study presents the performance of a new single-stage scroll compressor used for the heat pump drying of thermally sensitive materials over a wide temperature range. The performance of the new compressor was predicted by an ARI standard 540 map-based compressor model and verified by a semi-open drying heat pump system constructed for this purpose. A comparison of the experimental data with the predicted data proved that the new scroll compressor used in the drying heat pump works well, can supply a wide range of condensing temperatures (30--80℃) (without auxiliary heating), and has a minimum coeffi- cient of performance (COP) above 2.0, even in the worst condition.
文摘Based on the theory developed by Moors and Greitzer, a new simplifying approximation, which takesinto account the influence of higher harmonics of rotating waves, is proposed in this paper to get a simplified model of post stall transients in axial compression systems. This approximation leads to a set ofthree simultaneous nonlinear first order partial differential equations. The further investigation of poststall behavior for different response modes of instabilities (rotating stall and/or surge), recoverability,prestall period during stall inception, and the effect of compression system parameters on them canbe carried out by this model and has been discussed in detail in the present paper. It has been foundthat stall inception exhibits a large prestall period in the region with small slope of compressor characteristic, and in this region, final throttle setting, compressor characteristic and time-lag parametershave a strong influence on the period. The inertia parameters of blade rows have a strong influenceon the recoverability of compression systems and the blockage of stall cell at recovery point. Somequalitative comparisons with available experimental results and experience are made, and it shows thatthe proposed model is very simple and reliable.
基金Supported by the National Natural Science Foundation of China under No.61702427the Doctoral Program of Higher Education under Grant No.SWU115091+5 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University under No.SWU116007the National Natural Science Foundation of China under Grant No.61772437Sichuan Youth Science and Technique Foundation under No.2017JQ0048the National Natural Science Foundation of China under Grant No.61401371Josef Pieprzyk has been supported by National Science Centre,Poland,Project Registration Number UMO-2014/15/B/ST6/05130
文摘Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-photon spin-orbit entanglement, we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding. In our proposed scheme, we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence, which is encoded multiple spin states for secret shares transmitted to participants. We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.