期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer的DGA域名检测方法
被引量:
4
1
作者
张鑫
程华
房一泉
《计算机工程与科学》
CSCD
北大核心
2020年第3期411-417,共7页
已有DGA检测方法已经获得了较高的检测精度,但在缩略域名上存在误报率高的问题。主要原因是缩略域名字符间随机性高,现有检测方法从随机性角度很难有效地区分缩略域名和DGA域名。在分析了缩略域名的字符特性后,基于自注意力机制实现了...
已有DGA检测方法已经获得了较高的检测精度,但在缩略域名上存在误报率高的问题。主要原因是缩略域名字符间随机性高,现有检测方法从随机性角度很难有效地区分缩略域名和DGA域名。在分析了缩略域名的字符特性后,基于自注意力机制实现了域名字符依赖性的检测;并采用LSTM改进了Transformer模型的编码方式,以更好地捕获域名中字符位置信息;基于Transformer模型构建了DGA域名检测方法(MHA)。实验结果表明,MHA可以有效地区分出DGA域名和缩略域名,得到了更高的精确率和更低的误报率。
展开更多
关键词
缩略域名
Transformer模型
自注意力机制
字符依赖性
下载PDF
职称材料
题名
基于Transformer的DGA域名检测方法
被引量:
4
1
作者
张鑫
程华
房一泉
机构
华东理工大学信息科学与工程学院
出处
《计算机工程与科学》
CSCD
北大核心
2020年第3期411-417,共7页
基金
赛尔网络下一代互联网技术创新项目(NGII20170520)。
文摘
已有DGA检测方法已经获得了较高的检测精度,但在缩略域名上存在误报率高的问题。主要原因是缩略域名字符间随机性高,现有检测方法从随机性角度很难有效地区分缩略域名和DGA域名。在分析了缩略域名的字符特性后,基于自注意力机制实现了域名字符依赖性的检测;并采用LSTM改进了Transformer模型的编码方式,以更好地捕获域名中字符位置信息;基于Transformer模型构建了DGA域名检测方法(MHA)。实验结果表明,MHA可以有效地区分出DGA域名和缩略域名,得到了更高的精确率和更低的误报率。
关键词
缩略域名
Transformer模型
自注意力机制
字符依赖性
Keywords
abbreviated domain name
transformer model
self-attention mechanism
character dependence
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Transformer的DGA域名检测方法
张鑫
程华
房一泉
《计算机工程与科学》
CSCD
北大核心
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部