This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis o...This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed. Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed, and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.展开更多
文摘This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed. Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed, and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.