In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor simila...In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor similar to UCT-type configuration and two-stage anoxic/oxic process.The simultaneous nitrogen and phosphorus removal capacities and the potential of denitrifying phosphorus removal,in particular,were investigated with four different feeding patterns using real municipal wastewater.The results showed that the feeding ratios(Q1)in the first stage determined the nutrient removal performance in the SFA 2/O system.The average phosphorus removal efficiency increased from 19.17% to 96.25% as Q1 was gradually increased from run 1 to run 4,but the nitrogen removal efficiency exhibited a different tendency,which attained a maximum 73.61%in run 3 and then decreased to 59.62%in run 4.As a compromise between nitrogen and phosphorus removal,run 3 (Q1=0.45Qtotal) was identified as the optimal and stable case with the maximum anoxic phosphorus uptake rate of 1.58 mg·(g MLSS)-1 ·h-1.The results of batch tests showed that ratio of the anoxic phosphate uptake capacity to the aerobic phosphate uptake capacity increased from 11.96% to 36.85% with the optimal influent feeding ratio to the system in run 3,which demonstrated that the denitrifying polyP accumulating organisms could be accumulated and contributed more to the total phosphorus removal by optimizing the inflow ratio distribution.However,the nitrate recirculation to anoxic zone and influent feeding ratios should be carefully controlled for carbon source saving.展开更多
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with...Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.展开更多
Anammox (anaerobic ammonium oxidation) is an important process in many suboxic to anoxic marine environments for converting fixed nitrogen to N2, and has a major impact on the marine nitrogen cycle. Ladderane core l...Anammox (anaerobic ammonium oxidation) is an important process in many suboxic to anoxic marine environments for converting fixed nitrogen to N2, and has a major impact on the marine nitrogen cycle. Ladderane core lipids have been utilized as an indicator of the contribution of anammox to the marine nitrogen cycles. However, such studies have not been reported for the China seas and little is known about the importance of anammox within the nitrogen cycle of these marginal seas. In the research reported here, the ladderane core lipid contents of 17 surface sediment samples from the East China Sea are reported, and their spatial distribution is investigated. C^8-[5]-ladderane FAME, C20-[5]-ladderane FAME and C20-[3]- ladderane FAME have all been detected, suggesting that the anammox bacteria are widely present within the study area. The total contents of the three ladderane lipids (ZFAMEs) range from 24-355 ng/g (weight of dry sediments), with higher contents occurring in the Minzhe Mud Zone and broadly coincident with the spatial distribution of hypoxia. It is suggested that the sedimentary ladderane core lipids are mainly produced in the water column and their sedimentary contents can be used as indicators of water column hypoxia.展开更多
Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitr...Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1 mg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg· L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.展开更多
A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C...A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.展开更多
This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The res...This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.展开更多
Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cyc...Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4^+ by using NO_2^- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.展开更多
基金Supported by the Project of Beijing Science and Technology Committee (D07050601500000)the National Key Science and Technology Special Projects (2008ZX07317-007-105)
文摘In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor similar to UCT-type configuration and two-stage anoxic/oxic process.The simultaneous nitrogen and phosphorus removal capacities and the potential of denitrifying phosphorus removal,in particular,were investigated with four different feeding patterns using real municipal wastewater.The results showed that the feeding ratios(Q1)in the first stage determined the nutrient removal performance in the SFA 2/O system.The average phosphorus removal efficiency increased from 19.17% to 96.25% as Q1 was gradually increased from run 1 to run 4,but the nitrogen removal efficiency exhibited a different tendency,which attained a maximum 73.61%in run 3 and then decreased to 59.62%in run 4.As a compromise between nitrogen and phosphorus removal,run 3 (Q1=0.45Qtotal) was identified as the optimal and stable case with the maximum anoxic phosphorus uptake rate of 1.58 mg·(g MLSS)-1 ·h-1.The results of batch tests showed that ratio of the anoxic phosphate uptake capacity to the aerobic phosphate uptake capacity increased from 11.96% to 36.85% with the optimal influent feeding ratio to the system in run 3,which demonstrated that the denitrifying polyP accumulating organisms could be accumulated and contributed more to the total phosphorus removal by optimizing the inflow ratio distribution.However,the nitrate recirculation to anoxic zone and influent feeding ratios should be carefully controlled for carbon source saving.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z326)the Programfor New Century Excellent Talents(06-0373)in University
文摘Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428901)the National Natural Science Foundation of China (Nos. 21007062, 41020164005)the Ocean University of China Special Fund Projects for Young Teachers (No. 201013018)
文摘Anammox (anaerobic ammonium oxidation) is an important process in many suboxic to anoxic marine environments for converting fixed nitrogen to N2, and has a major impact on the marine nitrogen cycle. Ladderane core lipids have been utilized as an indicator of the contribution of anammox to the marine nitrogen cycles. However, such studies have not been reported for the China seas and little is known about the importance of anammox within the nitrogen cycle of these marginal seas. In the research reported here, the ladderane core lipid contents of 17 surface sediment samples from the East China Sea are reported, and their spatial distribution is investigated. C^8-[5]-ladderane FAME, C20-[5]-ladderane FAME and C20-[3]- ladderane FAME have all been detected, suggesting that the anammox bacteria are widely present within the study area. The total contents of the three ladderane lipids (ZFAMEs) range from 24-355 ng/g (weight of dry sediments), with higher contents occurring in the Minzhe Mud Zone and broadly coincident with the spatial distribution of hypoxia. It is suggested that the sedimentary ladderane core lipids are mainly produced in the water column and their sedimentary contents can be used as indicators of water column hypoxia.
文摘Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1 mg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg· L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.
基金Supported by the National Water Pollution Control and Management(2008ZX07316-002)the University of Macao Research Committee(RG067/09-10S/SHJ/FST)
文摘A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.
基金Sponsored by the National Natural Science Foundation of China(Grant No50008014)
文摘This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.
基金the National Natural Science Foundation of China (Grant Nos. 91328209, 91428308)the National Key Basic Research Program of China (Grant No. 2013CB955700)+2 种基金the State Oceanic Administration of China Program (Grant No. GASI-03-01-02-05)the Program of China National Offshore Oil Corporation (Grant Nos. CNOOC-KJ 125 FZDXM 00TJ 001-2014, CNOOC-KJ 125 FZDXM 00ZJ 001-2014)the Ministry of Science and Technology of the People’s Republic of China Program (Grant No. 2011IM010700)
文摘Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4^+ by using NO_2^- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.