We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di- minishing the influence induced by ...We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di- minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.展开更多
This paper investigates the high-solution of Mo isotopes and uses trace-element analyses for fresh and representative black shales and siliceous shales collected from the transition between the Late Ordovician and the...This paper investigates the high-solution of Mo isotopes and uses trace-element analyses for fresh and representative black shales and siliceous shales collected from the transition between the Late Ordovician and the Early Silurian at the Wangjiawan section in Yichang and the Late Permian Dalong Formation in the Shangsi Section of Sichuan. The applicability of different geochemical parameters used as paleo-oxygenation indices are also compared. The preliminary results show that V/(V+Ni), Uauth (auth U), V/Cr, Ceanom and U/Th have a scattered variation range, but most samples plot within the suboxic-anoxic fields. The suboxic-anoxic environment was dominant during the deposition and formation of the two anoxic facies. These redox indicators show little correspondence to the δ98M0 values. The U/Mo ratio can be used as a potential proxy for the paleo-redox conditions due to the possibility that Mo is enriched relative to U at different redox gradients during early diagenesis. This evidence is more significant for the euxinicity condition and corresponds to positive δ98M0 (〉1.5%o) values with low U/Mo ratios. This evidence is likely related to the depositional conditions near the boundary between anoxic and euxinic environ- ments, which are characterised by low bioturbation or water circulation. Other samples reveal a wide scatter of U/Mo ratios and δ98M0 〈1.5%0. These results are likely due to punctuated improvements in oxygenation with intense bioturbation or water circulation, which led to the redistribution of trace element.展开更多
文摘We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di- minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.
基金supported by National Natural Science Foundation of China (Grant Nos. 40673020, 40839903, 40821061)Ministry of Education of China (Grant Nos. IRT0441 and B07039)+2 种基金China Petroleum & Chemical Corporation Project (Grant No. G0800-06-ZS-319)MOST Special Fund from the State Key Laboratory of Geological ProcessesMineral Resources and the Fundamental Research Funds for the Central Universities
文摘This paper investigates the high-solution of Mo isotopes and uses trace-element analyses for fresh and representative black shales and siliceous shales collected from the transition between the Late Ordovician and the Early Silurian at the Wangjiawan section in Yichang and the Late Permian Dalong Formation in the Shangsi Section of Sichuan. The applicability of different geochemical parameters used as paleo-oxygenation indices are also compared. The preliminary results show that V/(V+Ni), Uauth (auth U), V/Cr, Ceanom and U/Th have a scattered variation range, but most samples plot within the suboxic-anoxic fields. The suboxic-anoxic environment was dominant during the deposition and formation of the two anoxic facies. These redox indicators show little correspondence to the δ98M0 values. The U/Mo ratio can be used as a potential proxy for the paleo-redox conditions due to the possibility that Mo is enriched relative to U at different redox gradients during early diagenesis. This evidence is more significant for the euxinicity condition and corresponds to positive δ98M0 (〉1.5%o) values with low U/Mo ratios. This evidence is likely related to the depositional conditions near the boundary between anoxic and euxinic environ- ments, which are characterised by low bioturbation or water circulation. Other samples reveal a wide scatter of U/Mo ratios and δ98M0 〈1.5%0. These results are likely due to punctuated improvements in oxygenation with intense bioturbation or water circulation, which led to the redistribution of trace element.