AIM: To investigate the effects of prednisolone on cell membrane bleb formation, calpain μ activation and talin degradation during hepatic ischemia-reperfusion injury in rats. METHODS: The hilar area of the left late...AIM: To investigate the effects of prednisolone on cell membrane bleb formation, calpain μ activation and talin degradation during hepatic ischemia-reperfusion injury in rats. METHODS: The hilar area of the left lateral and median lobes of rat liver (68%) was clamped for 60 min and followed by 120 min reperfusion. Prednisolone was administered at 1.0, 3.0, or 10 mg/kg at 30 min before ischemia. In addition to biochemical and microscopic analyses, activation of calpain μ was determined using specific antibodies against the intermediate (activated) form of calpain μ. Degradation of talin was also studied by Western blotting. RESULTS: In the control and prednisolone (1.0 mg/kg) groups, serum aspartate transaminase (AST) and alanine transaminase (ALT) level were elevated, and cell membrane bleb formation was observed after 120 min of reperfusion. Moreover, calpain μ activation and talin degradation were detected. Infusion of prednisolone at 3.0 or 10 mg/kg significantly suppressed serum AST and ALT, and prevented cell membrane bleb formation. At 10 mg/kg, prednisolone markedly suppressed calpain μ activation and talin degradation. CONCLUSION: Prednisolone can suppress ischemia- reperfusion injury of the rat liver. Its cytoprotective effect is closely associated with the suppression of calpain μ activation and talin degradation.展开更多
In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studi...In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.展开更多
We present atomic-resolution images of TiSe2,MoTe2 and TaS2 single crystals in liquid condition using our home-built scanning tunneling microscopy(STM).By facilely cleaving of single crystals in liquid,we were able to...We present atomic-resolution images of TiSe2,MoTe2 and TaS2 single crystals in liquid condition using our home-built scanning tunneling microscopy(STM).By facilely cleaving of single crystals in liquid,we were able to keep the fresh surface not oxidized within a few hours.Using the high-stable home-built STM,we have obtained atomic resolution images of TiSe2 accompanied with the single atom defects as well as the triangle defects in solution for the first time.Besides,the superstructure of MoTe2 and hexagonal chargedensity wave domain structure in nearly commensurate phase of TaS2 were also obtained at room temperature(295 K).Our results provide a more efficient method in investigating the lively surface of transition metal dichalcogenides.Besides,the high stable liquid-phase STM will support the further investigations in liquid-phase catalysis or electrochemistry.展开更多
Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering ...Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.展开更多
In this paper,the adaptive lifting scheme (ALS) and local gradient maps (LGM) are proposed to isolate the transient feature components from the gearbox vibration signals. Based on entropy minimization rule,the ALS is ...In this paper,the adaptive lifting scheme (ALS) and local gradient maps (LGM) are proposed to isolate the transient feature components from the gearbox vibration signals. Based on entropy minimization rule,the ALS is employed to change properties of an initial wavelet and design adaptive wavelet. Then LGM is applied to characterize the transient feature components in detail signal of decomposition results using ALS. In the present studies, the orthogonal Daubechies 4 (Db 4) wavelet is used as the initial wavelet. The proposed method is applied to both simulated signals and vibration signals acquired from a gearbox for periodic impulses detection. The two conventional methods (cepstrum analysis and Hilbert envelope analysis) and the orthogonal Db4 wavelet are also used to analyze the same signals for comparison. The results demonstrate that the proposed method is more effective in extracting transient components from noisy signals.展开更多
This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple a...This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple and the Defected Ground Structure(DGS) structure is used to get the low-pass filter characteristics. This proposed band-pass filter can be much smaller than a cascaded type filter. As a result of simulation, the insertion loss is less than 0.3 dB throughout the pass-band of 2.2 GHz- 10.6 GHz, while the return loss is more than 18 dB. And it has rejection level of 36 dB at GPS band.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the mos...It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.展开更多
Delamination detection presents a pertinent problem for SHM be no visible signs of the damage on the surface of the structure. (structural health monitoring), as in most cases, there may This study investigates the ...Delamination detection presents a pertinent problem for SHM be no visible signs of the damage on the surface of the structure. (structural health monitoring), as in most cases, there may This study investigates the scattering of a zeroth-order anti-symmetric (A0) Lamb wave mode by an edge delamination using the commercial FE (finite element) package ABAQUS. The Ao Lamb mode is chosen because the corresponding stress distribution is more sensitive to delamination than is the case for symmetric modes. The paper presents results for the scatter field for various angles of incidence, and for varying defect sizes. The regime of small defect size relative to the incident wavelength is of particular interest for SHM as it corresponds to early damage detection. It is shown that, in this regime the scattered field appears to originate from a point source at the origin of the delamination, and the corresponding amplitude is linearly proportional to area of the delamination. These results can be used to guide the use of Lamb waves to detect and quantify edge delamination in plate-like structures.展开更多
The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave e...The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.展开更多
The paper is concerned with the reconstruction of a defect in the core of a two-dimensional open waveguide from the scattering data. Since only a finite numbers of modes can propagate without attenuation inside the co...The paper is concerned with the reconstruction of a defect in the core of a two-dimensional open waveguide from the scattering data. Since only a finite numbers of modes can propagate without attenuation inside the core, the problem is similar to the one-dimensional inverse medium problem. In particular, the inverse problem suffers from a lack of uniqueness and is known to be severely ill-posed. To overcome these difficulties, we consider multi-frequency scattering data. The uniqueness of solution to the inverse problem is established from the far field scattering information over an interval of low frequencies.展开更多
The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities ar...The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the additive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as well as two-step cross-correlated.A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by unfavorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is globally minimized at each sampling time. A numerical simulation example is provided to illustrate the effectiveness and applicability of the proposed algorithm.展开更多
Topological defects(including disclinations and dislocations)which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters.In this paper,dis...Topological defects(including disclinations and dislocations)which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters.In this paper,disclinations are introduced into topological nontrivial elastic phononic plates.The deformation of the lattice yielded by disclinations produces a pentagonal core with the local five-fold symmetry.The topological bound states are well localized around the boundaries of the pentagonal cores with and without hollow regions.The topological bound states immunize against the finite sizes and the moderate imperfects of plates,essentially differing from the trivial defect states.The discovery of topological bound states unveils a new horizon in topological mechanics and physics,and it provides a novel platfonn to implement large-scale elastic devices with topologically protected resonances.展开更多
A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that...A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that the defect modes are mainly decided by the applied voltage when the incident angle is smaller than 8°. As the incident angle further increases, the band gap and the defect modes shift toward the shorter wavelength side, and the changes of the two modes are different, In the lower voltage range, the defect modes can be tuned not only by the applied voltage but also by the incident angle. In the higher voltage range, the defect modes can be further tuned by varying incident angle and the different modes can be separated from each other by a bip incident anple.展开更多
文摘AIM: To investigate the effects of prednisolone on cell membrane bleb formation, calpain μ activation and talin degradation during hepatic ischemia-reperfusion injury in rats. METHODS: The hilar area of the left lateral and median lobes of rat liver (68%) was clamped for 60 min and followed by 120 min reperfusion. Prednisolone was administered at 1.0, 3.0, or 10 mg/kg at 30 min before ischemia. In addition to biochemical and microscopic analyses, activation of calpain μ was determined using specific antibodies against the intermediate (activated) form of calpain μ. Degradation of talin was also studied by Western blotting. RESULTS: In the control and prednisolone (1.0 mg/kg) groups, serum aspartate transaminase (AST) and alanine transaminase (ALT) level were elevated, and cell membrane bleb formation was observed after 120 min of reperfusion. Moreover, calpain μ activation and talin degradation were detected. Infusion of prednisolone at 3.0 or 10 mg/kg significantly suppressed serum AST and ALT, and prevented cell membrane bleb formation. At 10 mg/kg, prednisolone markedly suppressed calpain μ activation and talin degradation. CONCLUSION: Prednisolone can suppress ischemia- reperfusion injury of the rat liver. Its cytoprotective effect is closely associated with the suppression of calpain μ activation and talin degradation.
基金Project(51265044)supported by the National Natural Science Foundation of ChinaProject(2013TT2028)supported by the Science and Technology Project of Hunan Province of ChinaProject(2012QK162)supported by the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China
文摘In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.
基金supported by the National Key R&D Program of China(No.2017YFA0402903 and No.2016YFA0401003)the National Natural Science Foundation of China(No.11804345,No.U1632160,No.51627901,No.21505139,No.11704384)+3 种基金Chinese Academy of Sciences Scientifc Research Equipment(Grant YZ201628)the Anhui Provincial Natural Science Foundation(No.1808085MB51,No.1608085MB36)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2018CXFX001)the Dean fund of Hefei Institutes of Physical Science of CAS(Grant YZJJ201620)
文摘We present atomic-resolution images of TiSe2,MoTe2 and TaS2 single crystals in liquid condition using our home-built scanning tunneling microscopy(STM).By facilely cleaving of single crystals in liquid,we were able to keep the fresh surface not oxidized within a few hours.Using the high-stable home-built STM,we have obtained atomic resolution images of TiSe2 accompanied with the single atom defects as well as the triangle defects in solution for the first time.Besides,the superstructure of MoTe2 and hexagonal chargedensity wave domain structure in nearly commensurate phase of TaS2 were also obtained at room temperature(295 K).Our results provide a more efficient method in investigating the lively surface of transition metal dichalcogenides.Besides,the high stable liquid-phase STM will support the further investigations in liquid-phase catalysis or electrochemistry.
文摘Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.
基金Higher School Specialized Research Fund for the Doctoral Program Funding Issue(No.2011021120032)Fundamental Research Funds for the Central Universities(No.2012jdhz23)
文摘In this paper,the adaptive lifting scheme (ALS) and local gradient maps (LGM) are proposed to isolate the transient feature components from the gearbox vibration signals. Based on entropy minimization rule,the ALS is employed to change properties of an initial wavelet and design adaptive wavelet. Then LGM is applied to characterize the transient feature components in detail signal of decomposition results using ALS. In the present studies, the orthogonal Daubechies 4 (Db 4) wavelet is used as the initial wavelet. The proposed method is applied to both simulated signals and vibration signals acquired from a gearbox for periodic impulses detection. The two conventional methods (cepstrum analysis and Hilbert envelope analysis) and the orthogonal Db4 wavelet are also used to analyze the same signals for comparison. The results demonstrate that the proposed method is more effective in extracting transient components from noisy signals.
基金supported by the IT R&D program of MKE/ⅡTA:Study of technologies for improvingthe RF spectrum characteristics by using the meta-electromagnetic structure[2009-F-033-01]
文摘This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple and the Defected Ground Structure(DGS) structure is used to get the low-pass filter characteristics. This proposed band-pass filter can be much smaller than a cascaded type filter. As a result of simulation, the insertion loss is less than 0.3 dB throughout the pass-band of 2.2 GHz- 10.6 GHz, while the return loss is more than 18 dB. And it has rejection level of 36 dB at GPS band.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.
文摘It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.
文摘Delamination detection presents a pertinent problem for SHM be no visible signs of the damage on the surface of the structure. (structural health monitoring), as in most cases, there may This study investigates the scattering of a zeroth-order anti-symmetric (A0) Lamb wave mode by an edge delamination using the commercial FE (finite element) package ABAQUS. The Ao Lamb mode is chosen because the corresponding stress distribution is more sensitive to delamination than is the case for symmetric modes. The paper presents results for the scatter field for various angles of incidence, and for varying defect sizes. The regime of small defect size relative to the incident wavelength is of particular interest for SHM as it corresponds to early damage detection. It is shown that, in this regime the scattered field appears to originate from a point source at the origin of the delamination, and the corresponding amplitude is linearly proportional to area of the delamination. These results can be used to guide the use of Lamb waves to detect and quantify edge delamination in plate-like structures.
基金Project (Nos 10632020 and 90715006) supported by the National Natural Science Foundation of China
文摘The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.
基金supported by National Science Foundation of USA(Grant Nos.DMS0908325DMS-0968360 and DMS-1211292)+2 种基金Ofce of Naval Research of USA(ONR)(Grant No.N00014-12-10319)National Natural Science Foundation of China(Grant No.91130004)the grant UJF-MSTIC-Plasmons
文摘The paper is concerned with the reconstruction of a defect in the core of a two-dimensional open waveguide from the scattering data. Since only a finite numbers of modes can propagate without attenuation inside the core, the problem is similar to the one-dimensional inverse medium problem. In particular, the inverse problem suffers from a lack of uniqueness and is known to be severely ill-posed. To overcome these difficulties, we consider multi-frequency scattering data. The uniqueness of solution to the inverse problem is established from the far field scattering information over an interval of low frequencies.
基金supported by the National Natural Science Foundation of China(61233005)the National Basic Research Program of China(973 Program)(2014CB744200)
文摘The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the additive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as well as two-step cross-correlated.A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by unfavorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is globally minimized at each sampling time. A numerical simulation example is provided to illustrate the effectiveness and applicability of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072108 and 51621004)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ40626).
文摘Topological defects(including disclinations and dislocations)which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters.In this paper,disclinations are introduced into topological nontrivial elastic phononic plates.The deformation of the lattice yielded by disclinations produces a pentagonal core with the local five-fold symmetry.The topological bound states are well localized around the boundaries of the pentagonal cores with and without hollow regions.The topological bound states immunize against the finite sizes and the moderate imperfects of plates,essentially differing from the trivial defect states.The discovery of topological bound states unveils a new horizon in topological mechanics and physics,and it provides a novel platfonn to implement large-scale elastic devices with topologically protected resonances.
基金supported by the National Natural Science Foundation of China (No.10805040)the Talent Introduction Program of Henan University of Technology (No.2007BS041)
文摘A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that the defect modes are mainly decided by the applied voltage when the incident angle is smaller than 8°. As the incident angle further increases, the band gap and the defect modes shift toward the shorter wavelength side, and the changes of the two modes are different, In the lower voltage range, the defect modes can be tuned not only by the applied voltage but also by the incident angle. In the higher voltage range, the defect modes can be further tuned by varying incident angle and the different modes can be separated from each other by a bip incident anple.