The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular v...The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular velocity components, is proposed. A newcriterion is presented to predict the occurrence of the central bursting defects. Parameter bobt, which represents the risk probability ofcracking, is proposed. It is calculated using the shape of the boundary at the entrance by minimizing the total power dissipationduring the extrusion process. When bobt is equal to or greater than bcr, central bursting occurs. Furthermore, the quantitativerelationships between central bursting defects and process parameters (semi die angle, reduction in area and frictional factor) arestudied. The results show that the central bursting defects are affected primarily by the reduction in area and the friction factor. Thepresented criterion is verified by comparing with the FEM simulation data and the results of the published paper.展开更多
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant...The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.展开更多
The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains ...The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.展开更多
A model to describe the main features of conjugated polymers with ring structures, such as polythiophene and polypyrrole, is constructed. It is shown that the origin of the symmetry breaking and confinement of a solit...A model to describe the main features of conjugated polymers with ring structures, such as polythiophene and polypyrrole, is constructed. It is shown that the origin of the symmetry breaking and confinement of a soliton and anti-soliton pair is branch hopping in the polymer rings.展开更多
文摘The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular velocity components, is proposed. A newcriterion is presented to predict the occurrence of the central bursting defects. Parameter bobt, which represents the risk probability ofcracking, is proposed. It is calculated using the shape of the boundary at the entrance by minimizing the total power dissipationduring the extrusion process. When bobt is equal to or greater than bcr, central bursting occurs. Furthermore, the quantitativerelationships between central bursting defects and process parameters (semi die angle, reduction in area and frictional factor) arestudied. The results show that the central bursting defects are affected primarily by the reduction in area and the friction factor. Thepresented criterion is verified by comparing with the FEM simulation data and the results of the published paper.
文摘The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
文摘The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 20674010 and 90403110, the Doctoral Foundation of the Education Ministry of China, and the U,S, Army Research 0ffice under Contract W911NF-04-1-0383
文摘A model to describe the main features of conjugated polymers with ring structures, such as polythiophene and polypyrrole, is constructed. It is shown that the origin of the symmetry breaking and confinement of a soliton and anti-soliton pair is branch hopping in the polymer rings.