Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code p...Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.展开更多
基金The authors gratefully acknowledge sponsors of this research: National Science Foundation of China (No. 51278296).
文摘Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.