期刊文献+
共找到5,075篇文章
< 1 2 250 >
每页显示 20 50 100
基于局部离群因子与隔离森林的激光超声缺陷检测
1
作者 李阳 朱文博 +4 位作者 静丰羽 叶中飞 马云瑞 周洋 邹云 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期105-112,共8页
针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度... 针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度;其次,利用LOF算法和IF算法进行了数据异常值的识别分析,并利用累积分布函数和核密度估计确定异常值的阈值大小;最后,对比了LOF算法、IF算法以及最大振幅图的检测结果。结果表明:LOF算法有更优的缺陷识别精度和更低的误判率。 展开更多
关键词 激光超声 缺陷检测 主成分分析 局部离群因子 隔离森林 铝合金
下载PDF
基于HPDE-YOLO的钢材表面缺陷检测算法
2
作者 冯迎宾 刘文泽 《沈阳理工大学学报》 CAS 2025年第1期31-38,共8页
针对钢材表面缺陷检测算法精度低、计算量大等问题,提出一种基于YOLOv8n的检测算法HPDE-YOLO(high-level path aggregation dynamic efficient network-YOLO)。首先,引入高效多尺度注意力(efficient multi-scale attention,EMA)机制,与... 针对钢材表面缺陷检测算法精度低、计算量大等问题,提出一种基于YOLOv8n的检测算法HPDE-YOLO(high-level path aggregation dynamic efficient network-YOLO)。首先,引入高效多尺度注意力(efficient multi-scale attention,EMA)机制,与主干部分的C2f融合,增强特征提取能力,并采用C2f-Faster结构提高模型计算速度;其次,提出一种高级筛选双向特征融合金字塔与路径聚合网络(high-level screening-feature bidirectional fusion pyramid and path aggregation network,HS-FPAN),在多个尺度上同时增强语义特征,有效提升模型对细节的捕捉能力;最后,融合动态上采样模块DySample,进一步提升模型检测速度。在NEU-DET数据集上的实验结果表明,相较YOLOv8n模型,HPDE-YOLO模型检测的平均精度均值mAP@0.5达到84.2%,提升了5.7个百分点,裂纹类缺陷检测的平均精度均值mAP提升了26.88个百分点,参数量减少了45%,浮点运算量减少了32%。HPDE-YOLO模型在满足轻量化的同时能够有效提升钢材表面缺陷检测的精度,且易于移动端部署,满足工业生产需求。 展开更多
关键词 YOLOv8n 缺陷检测 轻量化 特征融合 DySample
下载PDF
基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测 被引量:5
3
作者 陈奎 刘晓 +2 位作者 贾立娇 方永丽 赵昌新 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1289-1300,I0025,共13页
随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先... 随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先将重构的ShuffleNetV2-Stem-SPP(3S)网络作为YOLOv5的主干网络,显著减小了网络的参数量和计算量;其次引入针对小目标的增强多尺度特征融合网络以及4个预测头,来增强网络对绝缘子缺陷的感知能力,并结合Mosaic-9数据增强、CIoU损失函数进一步补偿轻量化导致的检测精度损失;最后将其应用到自制绝缘子数据集进行验证。实验结果表明,该文所提出的模型相对于未改进的YOLOv5,全类平均精度提高了3%,检测速度提高了81.8%,参数量、计算量分别压缩了82.4%、67%。因此,所提出的模型更适合部署在无人机平台上进行绝缘子缺陷的实时监测。 展开更多
关键词 绝缘子缺陷检测 YOLOv5 轻量化 ShuffleNetV2网络 小目标检测 无人机
下载PDF
改进YOLOv7算法的钢材表面缺陷检测研究 被引量:3
4
作者 高春艳 秦燊 +1 位作者 李满宏 吕晓玲 《计算机工程与应用》 CSCD 北大核心 2024年第7期282-291,共10页
当前,基于深度学习的智能检测技术逐步应用于钢材表面缺陷检测领域,针对钢材表面缺陷检测精度低的问题,提出一种高精度实时的缺陷检测算法CDN-YOLOv7。加入CARAFE轻量化上采样算子来改善网络特征融合能力,融合级联注意力机制和解耦头重... 当前,基于深度学习的智能检测技术逐步应用于钢材表面缺陷检测领域,针对钢材表面缺陷检测精度低的问题,提出一种高精度实时的缺陷检测算法CDN-YOLOv7。加入CARAFE轻量化上采样算子来改善网络特征融合能力,融合级联注意力机制和解耦头重新设计YOLOv7检测头网络,旨在解决原始头网络特征利用效率不高的问题,使其充分利用各尺度、通道、空间的多维度信息,提升复杂场景下模型表征能力。引入归一化Wasserstein距离重新设计Focal-EIoU损失函数,提出NF-EIoU替换CIoU损失,平衡各尺度缺陷样本对Loss的贡献,降低各尺度缺陷的漏检率。实验结果表明,CDN-YOLOv7的检测精度可达80.3%,较于原YOLOv7精度提升了6.0个百分点,模型推理速度可达60.8帧/s,满足实时性需求,CDN-YOLOv7在提升各尺度缺陷检测精度的同时显著降低了缺陷的漏检率。 展开更多
关键词 机器视觉 钢材表面 缺陷检测 CDN-YOLOv7
下载PDF
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:2
5
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 DETR EfficientNet 3-D注意力机制 多尺度加权特征融合
下载PDF
基于多尺度卷积注意力机制的输电线路防振锤缺陷检测 被引量:3
6
作者 张烨 李博涛 +2 位作者 尚景浩 黄新波 翟鹏超 《电工技术学报》 EI CSCD 北大核心 2024年第11期3522-3537,共16页
作为输电线路中的重要金具部件,防振锤的缺陷将对输电线路构成严重威胁。针对由于防振锤缺陷样本数量稀少、背景复杂、区域形状尺寸不一造成的防振锤缺陷识别能力不足的问题,提出一种基于多尺度卷积注意力机制的防振锤缺陷检测方法。首... 作为输电线路中的重要金具部件,防振锤的缺陷将对输电线路构成严重威胁。针对由于防振锤缺陷样本数量稀少、背景复杂、区域形状尺寸不一造成的防振锤缺陷识别能力不足的问题,提出一种基于多尺度卷积注意力机制的防振锤缺陷检测方法。首先,通过统计不同缺陷的防振锤尺寸,设计适应不同类别的多尺度卷积注意力机制,使网络重点关注图像中的防振锤区域;其次,引入结构重参数化方法,以将网络中的多分支结构无损失地转换为单分支结构,在提高网络检测性能的同时维持检测速度在较高水平;最后,以渐进式特征金字塔网络结构(AFPN)为基础,融合更多的浅层网络,提高了网络检测防振锤小目标的能力。实际收集的防振锤缺陷数据集实验结果表明,设计的检测方法可显著提升防振锤缺陷检测的性能,检测精度mAP0.5达到了91.9%,在TITAN XP平台下检测速度达60.88帧/s,可为输电线路防振锤智能化巡检提供参考。 展开更多
关键词 防振锤 深度学习 注意力机制 实时缺陷检测
下载PDF
基于改进SSD的工件表面缺陷检测 被引量:3
7
作者 刘艳菊 王秋霁 +2 位作者 张惠玉 刘彦忠 赵开峰 《热加工工艺》 北大核心 2024年第2期134-139,共6页
工件的表面缺陷不仅影响外观而且直接影响产品的质量、寿命和性能,因此对工件进行实时表面缺陷检测很有必要。针对当前SSD算法不利于小目标检测易导致误检的情况,提出了一种基于单阶段多层检测器的改进SSD自动检测方法。采用了以ResNet... 工件的表面缺陷不仅影响外观而且直接影响产品的质量、寿命和性能,因此对工件进行实时表面缺陷检测很有必要。针对当前SSD算法不利于小目标检测易导致误检的情况,提出了一种基于单阶段多层检测器的改进SSD自动检测方法。采用了以ResNet替换SSD中原始的VGGNet的方法,研究了小目标检测的问题;采用了对深层特征进行反卷积且将深层特征与浅层特征融合的方法,研究了语义信息不足易误检的问题。结果表明,该方法较原SSD模型在工件的表面缺陷检测上m AP值提高了约4.6%,从而认为本方法可用于工件表面缺陷的实时自动检测。 展开更多
关键词 工件表面 缺陷检测 SSD 反卷积 特征融合
下载PDF
修复缺陷嫌疑区域的无监督磁瓦表面缺陷检测 被引量:2
8
作者 唐善成 逯建辉 +2 位作者 张莹 金子成 赵安新 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第4期718-728,共11页
磁瓦表面缺陷样本数量少,异常视觉特征分布发散,现有依赖目标特征的有监督检测方法不能有效检测未定义缺陷;磁瓦表面正常纹理呈非均匀且非周期性分布,使得经典重构网络难以准确地重构磁瓦表面正常特征,导致相关无监督检测方法性能低下.... 磁瓦表面缺陷样本数量少,异常视觉特征分布发散,现有依赖目标特征的有监督检测方法不能有效检测未定义缺陷;磁瓦表面正常纹理呈非均匀且非周期性分布,使得经典重构网络难以准确地重构磁瓦表面正常特征,导致相关无监督检测方法性能低下.为此,采用多头注意力增强的掩码图像修复网络(MIINet),长距离提取图像特征,捕捉全局信息,增强图像修复的能力;引入视觉显著性算法抑制磁瓦表面纹理信息和突显缺陷区域,以便二值化算法精准分割缺陷嫌疑区域;利用MIINet修复待检测图像缺陷嫌疑区域,选用修复前后图像的残差图像和结构相似性实现缺陷检测与缺陷判定.与经典无监督方法相比,修复缺陷嫌疑区域的表面缺陷检测方法的准确率提升了2.36%,F1值提升了1.62%. 展开更多
关键词 多头注意力 磁瓦表面缺陷检测 无监督学习 图像修复 视觉显著性
下载PDF
基于改进YOLOX-S的太阳能电池片表面缺陷检测 被引量:2
9
作者 王淑青 朱文鑫 +1 位作者 张子言 王娟 《激光杂志》 CAS 北大核心 2024年第7期118-123,共6页
针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其... 针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其次采用FReLU激活函数改进MobileNetV3,使模型具有空间像素级建模能力,提高模型空间特征信息灵敏度,增强模型对小目标缺陷的特征提取能力。最后,在颈部网络引入注意力特征融合模块,聚合多尺度信息,加强模型的多尺度特征融合能力。实验结果表明,改进的YOLOX-S检测模型平均精度均值可达97.6%,参数量减少43.2%,检测速度达到51帧/s,置信度均在90%以上,检测结果可靠。 展开更多
关键词 太阳能电池片 缺陷检测 YOLOX-S 深度学习 轻量化
下载PDF
基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法 被引量:9
10
作者 崔克彬 焦静颐 《图学学报》 CSCD 北大核心 2024年第1期112-125,共14页
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YO... 针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YOLOv8。通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将FPN结构改为BiFPN更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的SimCSPSPPF模块。同时,针对微小物体检测,提出了四头ASFF预测头,可根据数据集特点进行替换。实验结果表明,MCB-FAH-YOLOv8算法在VOC2007数据集上检测精度(mAP)达到了88.8%,在NEU-DET钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度。 展开更多
关键词 MCB-FAH-YOLOv8 缺陷检测 注意力机制 四头ASFF预测头 特征融合
下载PDF
ECC-YOLO:一种改进的钢材表面缺陷检测方法 被引量:1
11
作者 赵佰亭 张晨 贾晓芬 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期108-116,共9页
针对当前钢材表面缺陷检测效率低、检测精度差的问题,提出了一个模型,命名为ECC-YOLO,基于YOLOv7的钢材表面缺陷检测。首先,为了提高主干网络特征图信息表征能力,引入了特征增强模块ConvNeXt,通过融合深度可分离卷积、大核卷积,增强模... 针对当前钢材表面缺陷检测效率低、检测精度差的问题,提出了一个模型,命名为ECC-YOLO,基于YOLOv7的钢材表面缺陷检测。首先,为了提高主干网络特征图信息表征能力,引入了特征增强模块ConvNeXt,通过融合深度可分离卷积、大核卷积,增强模型对细小裂缝的特征提取能力,其次设计了C2fFB模块,在增强目标特征信息的提取能力同时,显著降低了模型的计算量和参数复杂性。最后借助ECA注意力机制设计出MPCE模块,削弱复杂背景信息对钢表面缺陷检测的干扰,提升检测效率。最后,广泛的实验结果表明,ECC-YOLO在NEU-DET数据集上,该模型的mAP达到77.2%,相较于YOLOv7,ECC-YOLO的检测精度提高了10.1%,模型参数量减9.3%,该模型在钢表面缺陷检测中具有较好的综合性能。 展开更多
关键词 目标检测 缺陷检测 YOLOv7 ConvNeXt 注意力机制
下载PDF
面向工业表面缺陷检测的改进YOLOv8算法 被引量:1
12
作者 苏佳 贾泽 +1 位作者 秦一畅 张建燕 《计算机工程与应用》 CSCD 北大核心 2024年第14期187-196,共10页
针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,... 针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,从而提高模型的特征提取能力;提出多支路并行的特征融合模块(multi-scale context module,MCM),使得模型能够获取丰富的特征信息和全局上下文信息;在Neck模块中通过特征压缩和精简来减少模型的参数量和计算量,让模型更适用于资源有限的工业场景。采用GC10-DET和DeepPCB两个工业表面缺陷数据集来验证改进的EML-YOLO算法的有效性。实验结果表明,在GC10-DET数据集和DeepPCB数据集上,检测准确率上分别提高了4.3个百分点和2.9个百分点,参数量仅2.7×10^(6)。所提算法可以较好地应用于工业缺陷检测场景。 展开更多
关键词 缺陷检测 高效大卷积模块 多尺度特征 特征压缩 YOLOv8
下载PDF
基于PA-YOLO v5的印制电路板缺陷检测 被引量:1
13
作者 陈锦妮 拜晓桦 +1 位作者 李云红 田谷丰 《红外技术》 CSCD 北大核心 2024年第6期654-662,共9页
针对印制电路板裸板布局复杂,在对其表面进行缺陷检测时存在被检测图像对比度不高、亮度不均匀、缺陷位置小、形状不规则等特点,在增加网络深度时会造成参数量大、出现过拟合现象、丢失部分特征信息等问题,提出了基于YOLO v5与混合注意... 针对印制电路板裸板布局复杂,在对其表面进行缺陷检测时存在被检测图像对比度不高、亮度不均匀、缺陷位置小、形状不规则等特点,在增加网络深度时会造成参数量大、出现过拟合现象、丢失部分特征信息等问题,提出了基于YOLO v5与混合注意力机制融合,精度更高的印制电路板检测模型PA-YOLO v5(precision and attention-YOLO v5),抑制一般特征的干扰,保证网络提取特征时更加关注缺陷目标细节特征。并引用自适应双向特征融合模块(Bi FPN)网络,对每个特征图的尺度不同进行充分利用,对不同的检测目标赋予不同权重,提高网络的各个特征表达能力,最后利用FRe LU激活函数,通过将ReLU增加空间拓展成为一个2D激活函数,增强感受野对细节捕捉的能力,提高模型的鲁棒性和泛化性。在DeepPCB数据集中对6种缺陷分别进行测试,实验结果表明,文中提出的PA-YOLO v5的检测模型在该数据集上的准确率可达99.4%,并同时设置消融实验和对比实验验证了该模型的有效性。 展开更多
关键词 缺陷检测 注意力机制 印刷电路板 深度学习
下载PDF
基于深度学习的PCB缺陷检测技术 被引量:1
14
作者 程立英 张文雅 +3 位作者 程强 谷利茹 管文印 张志美 《沈阳师范大学学报(自然科学版)》 CAS 2024年第2期151-156,共6页
印刷电路板(printed circuit board,PCB)是电子产品的关键部件。在实际生产过程中,PCB难免会产生多种缺陷,对缺陷进行及时、精准检测具有一定的研究意义与应用价值。传统的检测方法存在速度慢、成本高、精度低的问题。针对PCB缺陷检测问... 印刷电路板(printed circuit board,PCB)是电子产品的关键部件。在实际生产过程中,PCB难免会产生多种缺陷,对缺陷进行及时、精准检测具有一定的研究意义与应用价值。传统的检测方法存在速度慢、成本高、精度低的问题。针对PCB缺陷检测问题,开展基于YOLO系列算法研究,在相同的实验环境下,以平均精度、精确率、召回率、每秒传输帧数作为评价性能指标。实验研究发现,YOLOv7在精度方面比YOLOv5有一定的提升,而YOLOv5在训练和推理的速度上比YOLOv7更快。提出融合CBAM(convolutional block attention module)注意力机制模块的YOLOv5改进算法用于PCB缺陷检测。经实验验证,改进算法在PCB缺陷检测的精确性和速度性能上均得到提升,其中,平均精度、精确度和召回率分别提升了7.40%,3.57%和5.63%。 展开更多
关键词 PCB缺陷检测 深度学习 YOLOv5 CBAM注意力机制
下载PDF
基于弱光增强与YOLO算法的锯链缺陷检测方法 被引量:3
15
作者 张福豹 吴婷 +2 位作者 赵春峰 魏贤良 刘苏苏 《电子测量技术》 北大核心 2024年第6期100-108,共9页
在基于机器视觉的锯链缺陷实时检测过程中,油污、粉尘等因素影响图像亮度和质量,导致目标检测网络的特征提取能力下降。为保证复杂环境下锯链缺陷检测的准确率,本文设计了一种结合弱光增强和YOLOv3算法的锯链自动化缺陷检测方法。首先使... 在基于机器视觉的锯链缺陷实时检测过程中,油污、粉尘等因素影响图像亮度和质量,导致目标检测网络的特征提取能力下降。为保证复杂环境下锯链缺陷检测的准确率,本文设计了一种结合弱光增强和YOLOv3算法的锯链自动化缺陷检测方法。首先使用RRDNet网络自适应增强锯链图像亮度,恢复图像暗区的细节特征;然后采用改进YOLOv3算法对锯链零件进行缺陷检测,增加FPN结构特征输出图层,利用K-means聚类算法对先验框参数重新聚类,并引入GIoU损失函数来提高小目标的缺陷检测精度。最后搭建一套锯链缺陷在线检测系统,对所提方法进行验证。实验结果表明,该方法能够显著提高弱光环境下的锯链图像照度、恢复图像细节,改进YOLOv3算法的mAP值为92.88%,相比原始YOLOv3提高14%,最终系统整体的漏检率降低到3.2%,过检率也降低到9.1%。所提出的方法可实现弱光场景下锯链缺陷的在线检测,并且对多种缺陷有着较高的检测精度。 展开更多
关键词 锯链 弱光增强 YOLOv3 缺陷检测
下载PDF
局部和全局特征融合的太阳能电池片表面缺陷检测 被引量:2
16
作者 陶志勇 何燕 +2 位作者 林森 易廷军 张尧晟 《光电工程》 CAS CSCD 北大核心 2024年第1期86-99,共14页
太阳能电池片表面缺陷具有类内差异大、类间差异小和背景特征复杂等特点,因此,要实现高精度的太阳能电池片表面缺陷自动检测是一项富有挑战性的任务。针对此问题,该文提出融合局部和全局特征的卷积视觉Transformer网络(CViT-Net),首先采... 太阳能电池片表面缺陷具有类内差异大、类间差异小和背景特征复杂等特点,因此,要实现高精度的太阳能电池片表面缺陷自动检测是一项富有挑战性的任务。针对此问题,该文提出融合局部和全局特征的卷积视觉Transformer网络(CViT-Net),首先采用Ghost聚焦(G-C2F)模块提取电池片缺陷局部特征;然后引进坐标注意力强调缺陷特征并抑制背景特征;最后构建Ghost视觉(G-ViT)模块融合电池片缺陷局部特征和全局特征。同时,针对不同检测精度和模型参数量,分别提供了CViT-Net-S和CViT-Net-L两种网络结构。实验结果表明,与经典MobileVit、MobileNetV3和GhostNet轻量级网络相比,CViT-Net-S对电池片分类准确率分别提升了1.4%、2.3%和1.3%,对电池片检测mAP50分别提升了2.7%、0.3%和0.8%;与ResNet50、RegNet网络相比,CViT-Net-L分类准确率分别提升了0.72%和0.7%,检测mAP50分别提升了3.9%、1.3%;与先进YOLOv6、YOLOv7和YOLOv8检测网络相比,作为骨干网络的CViT-Net-S、CViT-Net-L结构在mAP和mAP50指标上仍保持良好检测效果。结果证明本文算法在太阳能电池片表面缺陷检测领域具有应用价值。 展开更多
关键词 深度学习 特征融合 太阳能电池 缺陷分类 缺陷检测
下载PDF
计算机视觉的电站锅炉水冷壁缺陷检测方法 被引量:2
17
作者 王云霞 杨增阳 +1 位作者 岳海姣 杨守波 《机械设计与制造》 北大核心 2024年第2期246-249,254,共5页
发电厂锅炉巡检可有效避免安全事故发生,针对现场巡检过程中,锅炉水冷壁巡检区域较大,部分区域检测困难问题,开发一种基于YOLOv3模型的水冷壁缺陷检测系统。无人机携带视觉采集装置,对豫能集团某电厂锅炉水冷壁进行图像采集,画面经压缩... 发电厂锅炉巡检可有效避免安全事故发生,针对现场巡检过程中,锅炉水冷壁巡检区域较大,部分区域检测困难问题,开发一种基于YOLOv3模型的水冷壁缺陷检测系统。无人机携带视觉采集装置,对豫能集团某电厂锅炉水冷壁进行图像采集,画面经压缩后实时无线传输到检测末端装置,采用YOLOv3算法对水冷壁数据进行分析,对模型重要参数进行调整并做出样本增广与平衡化改进处理,提高检测效果,共测出磨损、裂缝、氧化等106处失效部位,与人工检测对比,成功率达77.9%。该方法解决了在巡检区域大、部分区域检测困难问题,使大型电站锅炉在开展水冷壁检测方面实际付出的成本得到有效缩减。 展开更多
关键词 电站锅炉 水冷壁 无人机 YOLOv3 缺陷检测
下载PDF
基于三重注意力的轻量级YOLOv8印刷电路板缺陷检测算法 被引量:4
18
作者 沈萍 李想 +1 位作者 杨宁 陈艾东 《微电子学与计算机》 2024年第4期20-30,共11页
在全球产业中,印刷电路板的生产和应用持续增长,已经成为各种电子设备的核心组成部分。由于缺陷尺度较小的问题以及检测模型轻便嵌入便携式设备的需求,印刷电路板图像的自动缺陷检测是一项具有挑战性的任务。为了满足智能制造和使用中... 在全球产业中,印刷电路板的生产和应用持续增长,已经成为各种电子设备的核心组成部分。由于缺陷尺度较小的问题以及检测模型轻便嵌入便携式设备的需求,印刷电路板图像的自动缺陷检测是一项具有挑战性的任务。为了满足智能制造和使用中对高质量印刷电路板产品日益增长的需求,提出一种基于YOLOv8的印刷电路板缺陷检测改进方法。首先,采用轻量级网络MobileViT作为主干网络,减小模型体积和计算量。其次,引入Triplet Attention模块,增强张量中不同维度间特征的捕捉能力。最后,将边界框损失函数替换为LMPDIoU,直接最小化预测框与实际标注框之间的左上角和右下角点距离。实验表明:改进后的检测模型能够在拥有极小参数量的同时保证小尺寸缺陷检测精度较高,模型参数量降低率为89.38%,满足轻便嵌入便携式检测设备和计算机资源受限的场景应用,证实了在印刷电路板缺陷检测领域具有良好的应用前景。 展开更多
关键词 印刷电路板 缺陷检测 YOLOv8 轻量级主干网络 注意力机制
下载PDF
基于神经网络的螺丝表面缺陷检测 被引量:1
19
作者 朱敏玲 任玉琢 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期224-231,共8页
针对螺丝零件通常存在的缺陷检测问题,提出了一种基于神经网络螺丝表面缺陷检测方法。将SimAM注意力机制引入YOLOv7网络模型,用GIoU损失函数替换CIoU损失函数提高模型检测精度,在目标框位置预测过程中,引入Soft-NMS优化候选框选择方法,... 针对螺丝零件通常存在的缺陷检测问题,提出了一种基于神经网络螺丝表面缺陷检测方法。将SimAM注意力机制引入YOLOv7网络模型,用GIoU损失函数替换CIoU损失函数提高模型检测精度,在目标框位置预测过程中,引入Soft-NMS优化候选框选择方法,有效提升候选框位置选择的精度。实验结果表明,改进后的网络模型平均精度均值(mAP)达到98.9%,对小目标缺陷检测精度更高,误检漏检情况更少,可以有效满足螺丝表面缺陷检测要求。 展开更多
关键词 螺丝 缺陷检测 神经网络 YOLOv7 小目标检测
下载PDF
基于改进YOLOv5算法的织物缺陷检测 被引量:1
20
作者 林桂娟 王宇 +1 位作者 刘珂宇 李子涵 《棉纺织技术》 CAS 2024年第10期33-41,共9页
基于现有织物缺陷检测算法受疵点尺寸与织物纹理背景的影响导致检测精度较低,同时检测模型过于复杂,难以部署到工控设备上,无法满足织物缺陷实时检测等现状,提出一种改进YOLOv5算法的织物缺陷检测算法。以YOLOv5算法为基准模型,采用跨... 基于现有织物缺陷检测算法受疵点尺寸与织物纹理背景的影响导致检测精度较低,同时检测模型过于复杂,难以部署到工控设备上,无法满足织物缺陷实时检测等现状,提出一种改进YOLOv5算法的织物缺陷检测算法。以YOLOv5算法为基准模型,采用跨阶段部分连接残差网络替代原模型的主干网络,增强模型上下文特征信息学习能力;将SimAM注意力机制融入到模型中,提升对有用特征的提取能力,抑制无用纹理背景特征的干扰;引入WIoU与Varifocal Loss损失函数,提高回归框准确性的同时降低负样本权重;最后,针对织物的小目标疵点难以检测的问题,提出增加小目标检测层的方法,提高模型的检测能力。试验结果表明:该研究算法能够快速准确地检测织物疵点,精确率与mAP分别达到86.46%与84.4%,与基准模型相比,分别提高6.16个百分点和5.8个百分点。 展开更多
关键词 织物缺陷检测 YOLOv5模型 SimAM WIoU CSPResNet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部