期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征组合与SVM的小粒种咖啡缺陷生豆检测 被引量:11
1
作者 赵玉清 杨慧丽 +3 位作者 张悦 杨颜凯 杨毅 赛敏 《农业工程学报》 EI CAS CSCD 北大核心 2022年第14期295-302,共8页
缺陷生咖啡豆显著影响商品咖啡豆品质及定价,其分选剔除是咖啡豆烘焙前的重要工作环节。目前缺陷豆的检测、分选及剔除主要由人工操作完成,耗时、费力且主观性大。该研究采用机器视觉技术提取咖啡豆轮廓、颜色和纹理3类特征,使用单一类... 缺陷生咖啡豆显著影响商品咖啡豆品质及定价,其分选剔除是咖啡豆烘焙前的重要工作环节。目前缺陷豆的检测、分选及剔除主要由人工操作完成,耗时、费力且主观性大。该研究采用机器视觉技术提取咖啡豆轮廓、颜色和纹理3类特征,使用单一类别特征和不同类别特征进行组合,运用网格搜索确定支持向量机(Support Vector Machine,SVM)分类模型参数,通过k折交叉验证试验对比SVM模型性能,运用皮尔逊相关系数进行特征筛选,找到检测缺陷生咖啡豆的较优特征组合。为说明SVM检测模型的有效性,选用随机森林(Random Forests,RF)、极端随机树(Extremely Randomized Trees,ERT)、逻辑回归(LogisticRegression,LR)、LightGBM、XGBoost和CatBoost算法进行较优特征组合的对比试验。结果表明:包括轮廓、颜色和纹理3类14个特征的组合是较优特征组合,其SVM检测模型的平均准确率、平均精度、平均召回率、平均F1值分别为84.9%、85.8%、82.3%、84.0%,效果均明显优于2类特征组合和单一类别特征的检测模型,SVM检测模型的准确率和F1值相比随机森林、极端随机树、逻辑回归、LightGBM、XGBoost和CatBoost分别提高4.7和4.8,3.4和4.0,5.6和7.2,3.0和3.0,3.5和4.2,2.6和2.6个百分点。较优特征组合的SVM缺陷生咖啡豆检测模型检测缺陷类型较全面,识别准确率高,可实际应用于小粒种生咖啡豆智能化分选装备。 展开更多
关键词 机器视觉 识别 特征组合 SVM 缺陷生咖啡豆 检测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部