设f(z)=sum from n=0 to∞a_nz^n为整函数,为了显示它的缺项,我们把它表示成f(z/)=sum from n-1 to∞a(_λ_n)z(~λ_n)1929年,G.Polya猜测:当整函数(1)为有穷级时,若其残存指数序列{λ_n}满足Fabry缺项条件(?)λ_n/n=∞,则(?)(In L(r,f)...设f(z)=sum from n=0 to∞a_nz^n为整函数,为了显示它的缺项,我们把它表示成f(z/)=sum from n-1 to∞a(_λ_n)z(~λ_n)1929年,G.Polya猜测:当整函数(1)为有穷级时,若其残存指数序列{λ_n}满足Fabry缺项条件(?)λ_n/n=∞,则(?)(In L(r,f)/In M(r,f))=1成立其中M(r,f)=(?)|f(z)|,L(r,f)=(?)|f(z)|.1963年,Fuchs证实了这个猜测.当整函数(1)为无穷级时,T.展开更多
文摘设f(z)=sum from n=0 to∞a_nz^n为整函数,为了显示它的缺项,我们把它表示成f(z/)=sum from n-1 to∞a(_λ_n)z(~λ_n)1929年,G.Polya猜测:当整函数(1)为有穷级时,若其残存指数序列{λ_n}满足Fabry缺项条件(?)λ_n/n=∞,则(?)(In L(r,f)/In M(r,f))=1成立其中M(r,f)=(?)|f(z)|,L(r,f)=(?)|f(z)|.1963年,Fuchs证实了这个猜测.当整函数(1)为无穷级时,T.