Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Inte...Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.展开更多
Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Str...Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.展开更多
The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Vi...The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Virtual Distortion Method (VDM), the control of water supply can be performed. Minimization of supply pressure in inlets to the network, subject to inequality constraints imposed on outlet pressure (in chosen nodes) is discussed. Taking advantage of pre-computed influence vectors, the real-time control strategy can be realised with small computational effort and therefore, can be managed with use of hardware-based controllers. Non-linear constitutive relation (water flow vs. pressure head) has been assumed.展开更多
In financial services, handset bank is known as one of major channels and this is the way to go in future and a key way for banks to compete on mobile intemet. Handset bank allows clients to make trades when and where...In financial services, handset bank is known as one of major channels and this is the way to go in future and a key way for banks to compete on mobile intemet. Handset bank allows clients to make trades when and where they choose. In this way, fast and easy banking is available to clients. This paper centers on marketing tactics of handset bank and thus presents a SoLoMo-based handset bank marketing mode, in order to provide a reference to the innovation and practice of handset bank marketing principles and means.展开更多
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while...The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.展开更多
In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the ...In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result.展开更多
E-mail, WWW, FTP, BT and QQlive, etc. axe used more and more universal because the advantage of Internet, but the data-omitting phenomenon is a headache problem. In this paper, we consider the problem of allocating a ...E-mail, WWW, FTP, BT and QQlive, etc. axe used more and more universal because the advantage of Internet, but the data-omitting phenomenon is a headache problem. In this paper, we consider the problem of allocating a large number of independent, unequal-sized loads exchanged between servers and clients or between themselves when there are data-omitting, and we describe the dynamic load balancing problems by intro- ducing some parameters αij, we use an undirected graph to model the platform, where servers (CPU time, disk memory) can have different speeds of computation and communication. Because the number of loads is large, we focus on the question of determining the optimal dynamic load balancing scheduling strategy (splittable strategy) for each processor (the fraction of time spent computing and the fraction of time spent communication with each neighbor). We show that finding the optimal dynamic load balancing state can be solved using a linear programming approach by adding more constrains and, thus, in polynomial time. And make the execute time minimization.展开更多
基金This material is supported by the National Natural Science Foundation of China under Grant No.61001116 and 61121001,Beijing Nova Programme No.Z131101000413030,the National Major Project No.2013ZX03003002 and Program for Changjiang Scholars and Innovative Research Team in University No.IRT1049
文摘Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.
文摘Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.
文摘The paper deals with control of supply in pipe networks based on so-called Dynamic Virtual Distortion Method. Making use of the analytical network model of this installation and using presented below, the so-called Virtual Distortion Method (VDM), the control of water supply can be performed. Minimization of supply pressure in inlets to the network, subject to inequality constraints imposed on outlet pressure (in chosen nodes) is discussed. Taking advantage of pre-computed influence vectors, the real-time control strategy can be realised with small computational effort and therefore, can be managed with use of hardware-based controllers. Non-linear constitutive relation (water flow vs. pressure head) has been assumed.
文摘In financial services, handset bank is known as one of major channels and this is the way to go in future and a key way for banks to compete on mobile intemet. Handset bank allows clients to make trades when and where they choose. In this way, fast and easy banking is available to clients. This paper centers on marketing tactics of handset bank and thus presents a SoLoMo-based handset bank marketing mode, in order to provide a reference to the innovation and practice of handset bank marketing principles and means.
基金Key Project of the Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-3National Natural Science Foundation of China,No.41501490
文摘The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.
基金Supported by the Tianyuan Special Funds of the NSFC under Grant No.11226242the Natural Science Foundation of Jiangxi Province of China under Grant Nos.20122BAB211006 and 20132BAB201016
文摘In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result.
基金This work is supported by National Natural Science Foundation of China (1067108) Scientific and technological project of Hubei province (2006AA412C27) Science Foundation of Three Gorges University (604401).
文摘E-mail, WWW, FTP, BT and QQlive, etc. axe used more and more universal because the advantage of Internet, but the data-omitting phenomenon is a headache problem. In this paper, we consider the problem of allocating a large number of independent, unequal-sized loads exchanged between servers and clients or between themselves when there are data-omitting, and we describe the dynamic load balancing problems by intro- ducing some parameters αij, we use an undirected graph to model the platform, where servers (CPU time, disk memory) can have different speeds of computation and communication. Because the number of loads is large, we focus on the question of determining the optimal dynamic load balancing scheduling strategy (splittable strategy) for each processor (the fraction of time spent computing and the fraction of time spent communication with each neighbor). We show that finding the optimal dynamic load balancing state can be solved using a linear programming approach by adding more constrains and, thus, in polynomial time. And make the execute time minimization.