期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
网板周围流态的可视化研究进展 被引量:7
1
作者 庄鑫 邢彬彬 +5 位作者 许传才 李超 罗振博 马丁一 齐雨琨 张国胜 《大连海洋大学学报》 CAS CSCD 北大核心 2015年第2期237-242,共6页
对网板的研究目前主要集中于网板流体力学方面,而对网板周围流态的研究甚少。实现网板周围流态的可视化,不仅有利于为网板的性能优化提供借鉴,也可为计算机数值模拟结果进行验证。本研究中,综合采用线条法和氢气泡发生法对3种不同类型... 对网板的研究目前主要集中于网板流体力学方面,而对网板周围流态的研究甚少。实现网板周围流态的可视化,不仅有利于为网板的性能优化提供借鉴,也可为计算机数值模拟结果进行验证。本研究中,综合采用线条法和氢气泡发生法对3种不同类型网板可视化的相关研究,分析了矩形平面网板、立体曲面网板和双翼型网板模型周围水流的流态分布,解析了流态分布与网板升力特性的关系,并对中国在网板研究中所存在的问题和今后的可实施性发展提出一些建议。 展开更多
关键词 网板可视化 线条法 氢气泡发生法 流态分布 升力特性
下载PDF
Visualization of flatness pattern recognition based on T-S cloud inference network 被引量:2
2
作者 张秀玲 赵亮 +1 位作者 臧佳音 樊红敏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期560-566,共7页
Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a nov... Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively. 展开更多
关键词 pattern recognition T-S cloud inference network cloud model mixed programming virtual reality visual recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部