High quality mesh plays an important role for finite element methods in science computation and numerical simulation.Whether the mesh quality is good or not,to some extent,it determines the calculation results of the ...High quality mesh plays an important role for finite element methods in science computation and numerical simulation.Whether the mesh quality is good or not,to some extent,it determines the calculation results of the accuracy and efficiency.Different from classic Lloyd iteration algorithm which is convergent slowly,a novel accelerated scheme was presented,which consists of two core parts:mesh points replacement and local edges Delaunay swapping.By using it,almost all the equilateral triangular meshes can be generated based on centroidal Voronoi tessellation(CVT).Numerical tests show that it is significantly effective with time consuming decreasing by 40%.Compared with other two types of regular mesh generation methods,CVT mesh demonstrates that higher geometric average quality increases over 0.99.展开更多
The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexag...The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.展开更多
基金Project(11002121) supported by the National Natural Science Foundation of ChinaProject(09QDZ09) supported by Doctor Foundation of Xiangtan University, China+2 种基金Project(2009LCSSE11) supported by Hunan Key Laboratory for CSSE, ChinaProject(2011FJ3231) supported by Planned Science and Technology Project of Hunan Province,ChinaProject(12JJ3054) supported by the Provincial Natural Science Foundation of Hunan,China
文摘High quality mesh plays an important role for finite element methods in science computation and numerical simulation.Whether the mesh quality is good or not,to some extent,it determines the calculation results of the accuracy and efficiency.Different from classic Lloyd iteration algorithm which is convergent slowly,a novel accelerated scheme was presented,which consists of two core parts:mesh points replacement and local edges Delaunay swapping.By using it,almost all the equilateral triangular meshes can be generated based on centroidal Voronoi tessellation(CVT).Numerical tests show that it is significantly effective with time consuming decreasing by 40%.Compared with other two types of regular mesh generation methods,CVT mesh demonstrates that higher geometric average quality increases over 0.99.
基金supported by the Beijing Municipal Commission of Education Foundation for School Innovation Ability Promotion Plan(Grant No.TJSHG201310015016)the Key Project of Beijing Institute of Graphic Communication(Grant No.Ea201501)the Creative Groups of Materials and Technology of Printed Electronics(Grant No.23190113100)
文摘The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.