To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar...To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.展开更多
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direc...To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.展开更多
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m...In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.展开更多
Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the ...Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.展开更多
The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells ...The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells was used. A susceptible-infected-recovered (SIR) scheme was represented. Stochasticity was generated by Monte Carlo method. Dynamics of model was explored by numerical simulations. Model achieves to represent the typical SIR prevalence curve. Performed simulations also show how infection, mobility and distribution of infected individuals may influence the dynamics of propagation. This simple theoretical model might be a basis for developing more realistic designs.展开更多
For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions w...For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields.展开更多
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech...Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.展开更多
An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electric...An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electricity market. The typical network flow is used to find the feasible flow and add the discharge water to different cascaded hydroelectric power plants at the same step. The same period network flow is used to find the optimal flow and add the power output at a different step. This new algorithm retains the advantages of the typical network flow, such as simplicity and ease of realization. The result of the case analysis indicates that the new algorithm can achieve high calculation precision and can be used to calculate the optimal operation of cascaded hydroelectric power plants.展开更多
In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been use...In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.展开更多
基金supported by the Natural Science Foundation of China(Nos.41404057,41674077 and 411640034)the Nuclear Energy Development Project of China,and the‘555’Project of Gan Po Excellent People
文摘To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
基金financially supported by the National Natural Science Foundation of China(No.41574127 and 41174104)the National Key Technology R&D Program for the 13th five-year plan(No.2016ZX05018006-006)
文摘To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
基金National Natural Science Foundation of China(No.51175481)
文摘In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.
文摘Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.
文摘The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells was used. A susceptible-infected-recovered (SIR) scheme was represented. Stochasticity was generated by Monte Carlo method. Dynamics of model was explored by numerical simulations. Model achieves to represent the typical SIR prevalence curve. Performed simulations also show how infection, mobility and distribution of infected individuals may influence the dynamics of propagation. This simple theoretical model might be a basis for developing more realistic designs.
基金supported by the funding of the Key Laboratory of Aerodynamic Noise Control(No.ANCL20190103)the State Key Laboratory of Aerodynamics(No.SKLA20180102)+1 种基金the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011)the National Natural Science Foundation of China(Nos.61672281,61732006)。
文摘For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields.
基金Sponsored by the National Natural Science Foundation of China (Grant No.5047028 and 50476017)
文摘Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.
文摘An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electricity market. The typical network flow is used to find the feasible flow and add the discharge water to different cascaded hydroelectric power plants at the same step. The same period network flow is used to find the optimal flow and add the power output at a different step. This new algorithm retains the advantages of the typical network flow, such as simplicity and ease of realization. The result of the case analysis indicates that the new algorithm can achieve high calculation precision and can be used to calculate the optimal operation of cascaded hydroelectric power plants.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008Doctoral Fund of Ministry of Education of China under Grant No.20060217009
文摘In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.