In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anti...In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.展开更多
Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations su...Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations such as in the lee of islands and breakwaters,and using unstructured meshes provides great flexibility for modelling the wave in the complex geomorphology of barriers and islands,also allowing for refinement of the grid resolution within computationally important domains.The numerical implementation of the module is based on the explicit second-order upwind finite-volume schemes in geographic space,the Flux-Corrected Transport(FCT)algorithm in frequency space and the implicit Crank-Nicolson method in directional space.The three-dimensional hydrodynamic module is then modified to couple with the wave model,where the wave readily provides the depth-dependent radiation stress and the wave-induced turbulence coefficient for the current fields,and the wave propagation takes into account the current-induced advection,refraction and diffraction of wave energy and the effect of water level.The applicability of the proposed model to calculate Snell’s Law,wave transformation over the breakwaters and the elliptic shoal,wave propagation over the rip current field and the undertow on a sloping beach is evaluated.Numerical results show that the present model makes better predictions of the near-shore wave propagation and complex three-dimensional(3D)near-shore circulation driven by the waves,considering analytical solutions and experimental values.展开更多
基金Supported by the Key Project of Chinese Ministry of Education under Grant No.211123the Scientific Research Fund of Hunan Provincial Education Department under Grant No.10B072+2 种基金Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science under Grant No.BSQD1010the Fund of Key Construction Academic Subject of Hunan Provincethe Natural Science Foundation of Hunan Province under Grant No.14JJ2125
文摘In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.
基金supported by the Fund for Creative Research Groups(Grant No.51221961)
文摘Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations such as in the lee of islands and breakwaters,and using unstructured meshes provides great flexibility for modelling the wave in the complex geomorphology of barriers and islands,also allowing for refinement of the grid resolution within computationally important domains.The numerical implementation of the module is based on the explicit second-order upwind finite-volume schemes in geographic space,the Flux-Corrected Transport(FCT)algorithm in frequency space and the implicit Crank-Nicolson method in directional space.The three-dimensional hydrodynamic module is then modified to couple with the wave model,where the wave readily provides the depth-dependent radiation stress and the wave-induced turbulence coefficient for the current fields,and the wave propagation takes into account the current-induced advection,refraction and diffraction of wave energy and the effect of water level.The applicability of the proposed model to calculate Snell’s Law,wave transformation over the breakwaters and the elliptic shoal,wave propagation over the rip current field and the undertow on a sloping beach is evaluated.Numerical results show that the present model makes better predictions of the near-shore wave propagation and complex three-dimensional(3D)near-shore circulation driven by the waves,considering analytical solutions and experimental values.