针对视差图像拼接时,拼接图像存在鬼影、亮度不均匀等问题,本文提出一种基于网格运动统计(Grid-based Motion Statistics,GMS)和改进最佳缝合线的视差图像拼接算法。算法首先利用快速特征点提取和描述(Oriented FAST and Rotated BRIEF,...针对视差图像拼接时,拼接图像存在鬼影、亮度不均匀等问题,本文提出一种基于网格运动统计(Grid-based Motion Statistics,GMS)和改进最佳缝合线的视差图像拼接算法。算法首先利用快速特征点提取和描述(Oriented FAST and Rotated BRIEF,ORB)算法提取特征点,并采用GMS算法筛除误匹配点;然后引入HSV颜色空间和图像梯度差改进能量函数,避免缝合线穿过图像边缘;最后基于图切割法求取最佳缝合线,进行图像的梯度融合拼接。仿真实验结果表明,在图像存在较大视差的情况下,本文算法特征点匹配正确率较基于尺度特征不变(Scale Invariant Feature Transform,SIFT)算法和基于加速稳健性特征(Speeded Up Robust Features,SURF)算法最低和最高提高了2.01倍和4.73倍,图像自然度平均提高了22.6%,且拼接的图像亮度均匀、无透视畸变。展开更多
针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提...针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提取,并对特征点进行暴力匹配。之后,通过GMS算法对图像中的粗匹配特征点进行网格划分,利用网格中正确匹配点邻域内具有较高特征支持量的原理对粗匹配对进行筛选;并引入图像匹配对在进行矢量运算时VCS不超过某一设定阈值的原理对匹配对进行部分剔除,以利于算法后期的快速收敛。最后,运用GCRANSAC算法进行局部最优模型拟合,得到精匹配特征点集,实现高精度的图像配准和拼接。通过与ASIFT+RANSAC、GMS、AKAZE+RANSAC、GMS+GC-RANSAC等算法对比,实验结果表明,该算法在平均匹配精度上提高了30.34%,平均匹配时间缩短0.54 s。展开更多
文摘针对视差图像拼接时,拼接图像存在鬼影、亮度不均匀等问题,本文提出一种基于网格运动统计(Grid-based Motion Statistics,GMS)和改进最佳缝合线的视差图像拼接算法。算法首先利用快速特征点提取和描述(Oriented FAST and Rotated BRIEF,ORB)算法提取特征点,并采用GMS算法筛除误匹配点;然后引入HSV颜色空间和图像梯度差改进能量函数,避免缝合线穿过图像边缘;最后基于图切割法求取最佳缝合线,进行图像的梯度融合拼接。仿真实验结果表明,在图像存在较大视差的情况下,本文算法特征点匹配正确率较基于尺度特征不变(Scale Invariant Feature Transform,SIFT)算法和基于加速稳健性特征(Speeded Up Robust Features,SURF)算法最低和最高提高了2.01倍和4.73倍,图像自然度平均提高了22.6%,且拼接的图像亮度均匀、无透视畸变。
文摘针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提取,并对特征点进行暴力匹配。之后,通过GMS算法对图像中的粗匹配特征点进行网格划分,利用网格中正确匹配点邻域内具有较高特征支持量的原理对粗匹配对进行筛选;并引入图像匹配对在进行矢量运算时VCS不超过某一设定阈值的原理对匹配对进行部分剔除,以利于算法后期的快速收敛。最后,运用GCRANSAC算法进行局部最优模型拟合,得到精匹配特征点集,实现高精度的图像配准和拼接。通过与ASIFT+RANSAC、GMS、AKAZE+RANSAC、GMS+GC-RANSAC等算法对比,实验结果表明,该算法在平均匹配精度上提高了30.34%,平均匹配时间缩短0.54 s。