期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于隐藏单元条件随机场的多知识源融合改进自动语音识别置信度 被引量:1
1
作者 高兴龙 潘接林 颜永红 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1852-1858,共7页
鉴于自动语音识别(ASR)中置信度估计困难的问题,该文提出一种基于多知识源融合的策略来提高置信度的鉴别能力。具体做法是,首先选择关于识别结果的声学层、语言层和语义层等不同层次的信息,然后通过实验确定这些信息不同的组合方式,并... 鉴于自动语音识别(ASR)中置信度估计困难的问题,该文提出一种基于多知识源融合的策略来提高置信度的鉴别能力。具体做法是,首先选择关于识别结果的声学层、语言层和语义层等不同层次的信息,然后通过实验确定这些信息不同的组合方式,并以此为特征在隐藏单元条件随机场(Hidden-units Conditional Random Fields,HuCRFs)框架下计算识别结果的条件概率。最后将HuCRFs条件概率作为语音识别结果置信度的新的估计。实验首先证明了HuCRFs条件概率是比归一化的网格后验概率鉴别能力更强的一种置信度估计方法。同时基于HuCRFs条件概率置信度,对解码器一遍识别得到的网格重新搜索最佳候选序列,取得了相对一遍识别最佳候选序列绝对近2%的字错误率(CER)下降。同时,该文也对比了基于HuCRFs条件概率搜索的最佳候选序列和基于长语言模型网格重估的最佳候选序列的性能,进一步证明了使用HuCRFs条件概率作为置信度估计是一种更好的选择。 展开更多
关键词 语音识别 置信度 多知识源融合 隐藏单元条件随机场 网格重估
下载PDF
3-D direct current resistivity forward modeling by adaptive multigrid finite element method 被引量:8
2
作者 汤井田 王飞燕 +1 位作者 任政勇 郭荣文 《Journal of Central South University》 SCIE EI CAS 2010年第3期587-592,共6页
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid... Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm. 展开更多
关键词 adaptive multigrid a-posteriori error estimator unstructured mesh V-CYCLE finite element method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部