A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative ...A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.展开更多
During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method...During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.展开更多
A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is c...A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is constructed element-wise, and it is discontinuous across the interior edges.One advantage of the MPPR technique is that the implementation is easier when adaptive meshes are involved.Superconvergence results of the gradient recovered with MPPR are proved for finite element methods for elliptic boundary problems and eigenvalue problems under adaptive meshes. The MPPR is applied to adaptive finite element methods to construct asymptotic exact a posteriori error estimates.Numerical tests are provided to examine the theoretical results and the effectiveness of the adaptive finite element algorithms.展开更多
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear ...We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.展开更多
Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear...Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3.展开更多
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the...For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.展开更多
We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameteri...We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In particular, our method produces almost isometric parameterizations for the objects close to the sphere.展开更多
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges bet...Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.展开更多
This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solutio...This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solution. In traditional algorithms of moving meshes, the initial mesh is a uniform mesh. The authors change it to Bakhvalov-Shishkin mesh, and prove that it improves efficiency by numerical experiments. Finally, the results of the two algorithms are analyzed.展开更多
With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS a...With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.展开更多
This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram...This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.展开更多
文摘A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.
文摘During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.
基金supported by the national basic research program of China under grant 2005CB321701the program for the new century outstanding talents in universities of China.
文摘A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is constructed element-wise, and it is discontinuous across the interior edges.One advantage of the MPPR technique is that the implementation is easier when adaptive meshes are involved.Superconvergence results of the gradient recovered with MPPR are proved for finite element methods for elliptic boundary problems and eigenvalue problems under adaptive meshes. The MPPR is applied to adaptive finite element methods to construct asymptotic exact a posteriori error estimates.Numerical tests are provided to examine the theoretical results and the effectiveness of the adaptive finite element algorithms.
基金supported by National Natural Science Foundation of China (Grant Nos. 91330202, 11371026, 11201501, 11571389, 11001259 and 11031006)National Basic Research Program of China (Grant No. 2011CB309703)the National Center for Mathematics and Interdisciplinary Science, Chinese Academy of Sciences, the President Foundation of Academy of Mathematics and Systems Science, Chinese Academy of Sciences and the Program for Innovation Research in Central University of Finance and Economics
文摘We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.
基金supported by National Natural Science Foundation of China(Grant Nos.6097008961170075 and 91230109)
文摘Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3.
基金supported by National Natural Science Foundation of China(Grant Nos.11226332,41204082 and 11071067)the China Postdoctoral Science Foundation(Grant No.2011M501295)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162120036)the Construct Program of the Key Discipline in Hunan Province
文摘For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.
基金Project supported by the National Natural Science Foundation of China (Nos. 60673006 and 60533060)the Program for New Century Excellent Talents in University (No. NCET-05-0275), Chinathe IDeA Network of Biomedical Research Excellence Grant (No. 5P20RR01647206) from National Institutes of Health (NIH), USA
文摘We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In particular, our method produces almost isometric parameterizations for the objects close to the sphere.
基金supported by the National Natural Science Foundation of China(Grant No.91125016)National Basic Research Program of China(Grants Nos.2010CB951001,2010CB428403)
文摘Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University, Guang- dong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), and the National Natural Science Foundation of China under Grant No. 10971074.
文摘This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solution. In traditional algorithms of moving meshes, the initial mesh is a uniform mesh. The authors change it to Bakhvalov-Shishkin mesh, and prove that it improves efficiency by numerical experiments. Finally, the results of the two algorithms are analyzed.
基金the National Natural Science Foundation of China (Grant No. 11171208)Shanghai Leading Academic Discipline Project (Grant No. S30106)
文摘With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.
基金supported by the '985' program of Jilin Universitythe National Natural Science Foundation of China under Grant No.10971082the NSAF of China under Grant No.11076014
文摘This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.