Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by pr...Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by proactive routing protocol. Pre-proposals like Tree Based Routing (TBR) protocol and Root Driven Routing (RDR) protocol are so centralized that they make the gateway becorre a bottleneck which severely restricts the network performance. We proposed an Optimized Tree-based Routing (OTR) protocol that logically separated the proactive tree into pieces. Route is partly computed by the branches instead of root. We also discussed the operation of multipie Intemet gateways which is a main issue in WMN. The new proposal lightens the load in root, reduces the overhead and improves the throughput. Numerical analysis and simulation results confirm that the perforrmnce of WMN is improved and OTR is more suitable for large scale WMN.展开更多
Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at th...Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at the same time wasproposed.The network architecture of the system was proposed, and its service model,extensible technology, medium access control, routing algorithm, channel allocation andsystem management technologies were analyzed according to the actual rescue requirementsof underground coal mine and the characteristics of underground spatial structureand radio transmissions.The relevant theories and key technologies were extracted,which would provide theoretical support for the system development.展开更多
Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
Wireless Mesh Networks (WMNs) have many applications in homes, schools, enterprises, and public places because of their useful characteristics, such as high bandwidth, high speed, and wide coverage. However, the sec...Wireless Mesh Networks (WMNs) have many applications in homes, schools, enterprises, and public places because of their useful characteristics, such as high bandwidth, high speed, and wide coverage. However, the security of wireless mesh networks is a precondition for practical use. Intrusion detection is pivotal for increasing network security. Considering the energy limitations in wireless mesh networks, we adopt two types of nodes: Heavy Intrusion Detection Node (HIDN) and Light Intrusion Detection Node (LIDN). To conserve energy, the LIDN detects abnorrml behavior according to probability, while the HIDN, which has sufficient energy, is always operational. In practice, it is very difficult to acquire accurate information regarding attackers. We propose an intrusion detection model based on the incomplete inforrmtion game (ID-IIG). The ID-IIG utilizes the Harsanyi transformation and Bayesian Nash equilibrium to select the best strategies of defenders, although the exact attack probability is unknown. Thus, it can effectively direct the deployment of defenders. Through experiments, we analyze the perforrmnce of ID-IIG and verify the existence and attainability of the Bayesian Nash equilibrium.展开更多
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec...Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.展开更多
Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR...Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR is more suitable in the case of an unreliable wireless link and can evidently improve the end-to-end throughput of Wireless Mesh Networks (WMNs). In this paper, we focus on OR in Multi-Radio Multi-Channel WMNs (MRMC-WMNs). This problem has not been well examined and is considerably more challenging than the OR in single-radio wireless networks considered in the existing literature. First, we validate the advantage of OR in MRMC-WMNs. Second, we propose Low-complexity Channel Assignment for Opportunistic Routing (LcCAOR), which assigns channels to flows according to the interference state of every node. Third, we implement the LcCOAR in a fully distributed manner. The simulation result shows that compared with OR in Single-Radio Single-Channel WMNs (SRSC-WMNs), the proposed OR can significantly enhance the throughput to 87.11% and 100.3% in grid and tree WMNs, respectively.展开更多
The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presente...The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.展开更多
This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the paramete...This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the parameters that affect the network performance like ratio of control slots number to data slots number, collision probability, node density and average hopcounts, the availa- ble capacity for each node is inferred. Meanwhile, the order of transmission range for robust connec- tivity of large scale WMNs is derived. With the stochastic model and inferred available capacity per node, the performance of TDD-based WMNs using IEEE 802.16 standard is analyzed under various conditions. Simulation results indicate that the available capacity of IEEE 802.16-based TDD-based WMNs and the theoretical result have the same increasing and decreasing trend as the node density increases. Simulation results also illustrate the optimal value of the ratio of control slots number to data slots number that maximizes the available capacity.展开更多
Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfair...Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.展开更多
The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networ...The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networks and propose a new graph-theory algorithm. The algorithm aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. In this proposed algorithm, the topology of network was modeled as a general graph and could be transformed into a weighted complete bipartite-graph by three processes. The simulations show that the presented algorithm can improve the performance of spectrum allocation.展开更多
基金Acknowledgements This paper was supported by the Major National Science and Technology program under Grant No. 2011ZX03005-002 the National Natural Science Foundation of China under Grant No. 61100233 the Fundamental Universities under Grant No Research Funds for the Central K50510030010.
文摘Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by proactive routing protocol. Pre-proposals like Tree Based Routing (TBR) protocol and Root Driven Routing (RDR) protocol are so centralized that they make the gateway becorre a bottleneck which severely restricts the network performance. We proposed an Optimized Tree-based Routing (OTR) protocol that logically separated the proactive tree into pieces. Route is partly computed by the branches instead of root. We also discussed the operation of multipie Intemet gateways which is a main issue in WMN. The new proposal lightens the load in root, reduces the overhead and improves the throughput. Numerical analysis and simulation results confirm that the perforrmnce of WMN is improved and OTR is more suitable for large scale WMN.
基金Supported by the National Natural Science Foundation of China(50534060)the National High Technology Project of China(2007AA06Z106)
文摘Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at the same time wasproposed.The network architecture of the system was proposed, and its service model,extensible technology, medium access control, routing algorithm, channel allocation andsystem management technologies were analyzed according to the actual rescue requirementsof underground coal mine and the characteristics of underground spatial structureand radio transmissions.The relevant theories and key technologies were extracted,which would provide theoretical support for the system development.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
基金This work was partially supported by the National Natural Science Foundation of China under Cxants No. 61272451, No. 61103220, No. 61173154, No. 61173175 the National Critical Patented Projects in the next generation broadband wireless mobile communication network under Grant No. 2010ZX03006-001-01.
文摘Wireless Mesh Networks (WMNs) have many applications in homes, schools, enterprises, and public places because of their useful characteristics, such as high bandwidth, high speed, and wide coverage. However, the security of wireless mesh networks is a precondition for practical use. Intrusion detection is pivotal for increasing network security. Considering the energy limitations in wireless mesh networks, we adopt two types of nodes: Heavy Intrusion Detection Node (HIDN) and Light Intrusion Detection Node (LIDN). To conserve energy, the LIDN detects abnorrml behavior according to probability, while the HIDN, which has sufficient energy, is always operational. In practice, it is very difficult to acquire accurate information regarding attackers. We propose an intrusion detection model based on the incomplete inforrmtion game (ID-IIG). The ID-IIG utilizes the Harsanyi transformation and Bayesian Nash equilibrium to select the best strategies of defenders, although the exact attack probability is unknown. Thus, it can effectively direct the deployment of defenders. Through experiments, we analyze the perforrmnce of ID-IIG and verify the existence and attainability of the Bayesian Nash equilibrium.
基金Acknowledgements Project supported by the National Natural Science Foundation of China (Grant No.60932003), the National High Technology Development 863 Program of China (Grant No.2007AA01Z452, No. 2009AA01 Z118 ), Project supported by Shanghai Municipal Natural Science Foundation (Grant No.09ZRI414900), National Undergraduate Innovative Test Program (091024812).
文摘Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.
基金supported by the National Basic Research Program of China (973) under Grant No.2012CB315801 the National Natural Science Foundation of China under Grants No.61003305,No.61173167,No.61173168,No.61070194 the Information Security Industrialization Fund from the National Development&Reform Commission of China (NDRC) under Grant No.NDRC[2009]1886
文摘Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR is more suitable in the case of an unreliable wireless link and can evidently improve the end-to-end throughput of Wireless Mesh Networks (WMNs). In this paper, we focus on OR in Multi-Radio Multi-Channel WMNs (MRMC-WMNs). This problem has not been well examined and is considerably more challenging than the OR in single-radio wireless networks considered in the existing literature. First, we validate the advantage of OR in MRMC-WMNs. Second, we propose Low-complexity Channel Assignment for Opportunistic Routing (LcCAOR), which assigns channels to flows according to the interference state of every node. Third, we implement the LcCOAR in a fully distributed manner. The simulation result shows that compared with OR in Single-Radio Single-Channel WMNs (SRSC-WMNs), the proposed OR can significantly enhance the throughput to 87.11% and 100.3% in grid and tree WMNs, respectively.
基金Supported by the National Natural Science Foundation of China (60873082,61073186, 61073104, 60903058) China Postdoctoral Science Foundation (20090451108)the Science and Technology Planning Project of Hunan Province (2011FJ3237).
文摘The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.
基金Supported by the National Natural Science Foundation of China ( No. 60674009, 60830001 ).
文摘This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the parameters that affect the network performance like ratio of control slots number to data slots number, collision probability, node density and average hopcounts, the availa- ble capacity for each node is inferred. Meanwhile, the order of transmission range for robust connec- tivity of large scale WMNs is derived. With the stochastic model and inferred available capacity per node, the performance of TDD-based WMNs using IEEE 802.16 standard is analyzed under various conditions. Simulation results indicate that the available capacity of IEEE 802.16-based TDD-based WMNs and the theoretical result have the same increasing and decreasing trend as the node density increases. Simulation results also illustrate the optimal value of the ratio of control slots number to data slots number that maximizes the available capacity.
基金Projects(61163060,61103204,60963022) supported by the National Natural Science Foundation of ChinaProject(D018023) supported by the Natural Science Foundation of Guangxi Province,ChinaPostdoctoral Funding of Central South University,China
文摘Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.
文摘The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networks and propose a new graph-theory algorithm. The algorithm aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. In this proposed algorithm, the topology of network was modeled as a general graph and could be transformed into a weighted complete bipartite-graph by three processes. The simulations show that the presented algorithm can improve the performance of spectrum allocation.