Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec...Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the paramete...This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the parameters that affect the network performance like ratio of control slots number to data slots number, collision probability, node density and average hopcounts, the availa- ble capacity for each node is inferred. Meanwhile, the order of transmission range for robust connec- tivity of large scale WMNs is derived. With the stochastic model and inferred available capacity per node, the performance of TDD-based WMNs using IEEE 802.16 standard is analyzed under various conditions. Simulation results indicate that the available capacity of IEEE 802.16-based TDD-based WMNs and the theoretical result have the same increasing and decreasing trend as the node density increases. Simulation results also illustrate the optimal value of the ratio of control slots number to data slots number that maximizes the available capacity.展开更多
基金Acknowledgements Project supported by the National Natural Science Foundation of China (Grant No.60932003), the National High Technology Development 863 Program of China (Grant No.2007AA01Z452, No. 2009AA01 Z118 ), Project supported by Shanghai Municipal Natural Science Foundation (Grant No.09ZRI414900), National Undergraduate Innovative Test Program (091024812).
文摘Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
基金Supported by the National Natural Science Foundation of China ( No. 60674009, 60830001 ).
文摘This paper addresses the available capacity and robust connectivity of time division duplex based wireless mesh networks (TDD-based WMNs). A stochastic model is presented for TDD-based WMNs. Considering the parameters that affect the network performance like ratio of control slots number to data slots number, collision probability, node density and average hopcounts, the availa- ble capacity for each node is inferred. Meanwhile, the order of transmission range for robust connec- tivity of large scale WMNs is derived. With the stochastic model and inferred available capacity per node, the performance of TDD-based WMNs using IEEE 802.16 standard is analyzed under various conditions. Simulation results indicate that the available capacity of IEEE 802.16-based TDD-based WMNs and the theoretical result have the same increasing and decreasing trend as the node density increases. Simulation results also illustrate the optimal value of the ratio of control slots number to data slots number that maximizes the available capacity.