Curvature tells much about details of surfaces and is studied widely by researchers in the computer graphics com- munity. In this paper, we first explain the mean-curvature view of Dirichlet energy of triangular surfa...Curvature tells much about details of surfaces and is studied widely by researchers in the computer graphics com- munity. In this paper, we first explain the mean-curvature view of Dirichlet energy of triangular surfaces and introduce a curvature representation of details, and then present surfaces editing applications based on their curvature representation. We apply our method to surfaces with complex boundaries and rich details. Results show the validity and robustness of our method and dem- onstrate curvature map can be a helpful surfaces detail representation.展开更多
The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary ac...The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.展开更多
Immersed boundary method is a crucial method to deal with particle suspension flow.Particle shapes involved in such flow are usually simple geometry,such as sphere and ellipsoid,which can be conveniently represented b...Immersed boundary method is a crucial method to deal with particle suspension flow.Particle shapes involved in such flow are usually simple geometry,such as sphere and ellipsoid,which can be conveniently represented by the triangular surface grid.When the number of particles and resolution of the surface grid increase,calculating the hydrodynamic force on the particle surface through integration can be time-consuming.Hence,the present paper establishes a fast mapping method to evaluate immersed boundary hydrodynamic force.Firstly,the particle surface grid is generated by an initial triangular element grid.Subsequently,the initial surface grid is refined by bisection refinement to the desired resolution.The final step is to find the triangular element index on the particle triangular surface grid,which contains the projective point.Test cases show that the present mapping algorithm has good accuracy and efficiency for calculating hydrodynamic forces of particles.展开更多
This paper concerns a system of equations describing the vibrations of a planar network of nonlinear Timoshenko beams. The authors derive the equations and appropriate nodal conditions, determine equilibrium solutions...This paper concerns a system of equations describing the vibrations of a planar network of nonlinear Timoshenko beams. The authors derive the equations and appropriate nodal conditions, determine equilibrium solutions and, using the methods of quasilinear hyperbolic systems, prove that for tree-like networks the natural initial-boundary value problem admits semi-global classical solutions in the sense of Li [Li, T. T., Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Ser. Appl. Math., vol 3,American Institute of Mathematical Sciences and Higher Education Press, 2010] existing in a neighborhood of the equilibrium solution. The authors then prove the local exact controllability of such networks near such equilibrium configurations in a certain specified time interval depending on the speed of propagation in the individual beams.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312102), and the Research Grant of University of Macao, China
文摘Curvature tells much about details of surfaces and is studied widely by researchers in the computer graphics com- munity. In this paper, we first explain the mean-curvature view of Dirichlet energy of triangular surfaces and introduce a curvature representation of details, and then present surfaces editing applications based on their curvature representation. We apply our method to surfaces with complex boundaries and rich details. Results show the validity and robustness of our method and dem- onstrate curvature map can be a helpful surfaces detail representation.
文摘The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51636009 and 52006212)Chinese Academy of Sciences(Grant Nos.ZDBS-LY-JSC033 and XDB22040201).
文摘Immersed boundary method is a crucial method to deal with particle suspension flow.Particle shapes involved in such flow are usually simple geometry,such as sphere and ellipsoid,which can be conveniently represented by the triangular surface grid.When the number of particles and resolution of the surface grid increase,calculating the hydrodynamic force on the particle surface through integration can be time-consuming.Hence,the present paper establishes a fast mapping method to evaluate immersed boundary hydrodynamic force.Firstly,the particle surface grid is generated by an initial triangular element grid.Subsequently,the initial surface grid is refined by bisection refinement to the desired resolution.The final step is to find the triangular element index on the particle triangular surface grid,which contains the projective point.Test cases show that the present mapping algorithm has good accuracy and efficiency for calculating hydrodynamic forces of particles.
基金supported by the National Basic Research Program of China(No.2103CB834100)the National Science Foundation of China(No.11121101)+1 种基金the National Natural Sciences Foundation of China(No.11101273)the DFG-Cluster of Excellence:Engineering of Advanced Materials
文摘This paper concerns a system of equations describing the vibrations of a planar network of nonlinear Timoshenko beams. The authors derive the equations and appropriate nodal conditions, determine equilibrium solutions and, using the methods of quasilinear hyperbolic systems, prove that for tree-like networks the natural initial-boundary value problem admits semi-global classical solutions in the sense of Li [Li, T. T., Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Ser. Appl. Math., vol 3,American Institute of Mathematical Sciences and Higher Education Press, 2010] existing in a neighborhood of the equilibrium solution. The authors then prove the local exact controllability of such networks near such equilibrium configurations in a certain specified time interval depending on the speed of propagation in the individual beams.