A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
An important theoretic interest is to study the relations between different interconnection networks, and to compare the capability and performance of the network structures. The most popular way to do the investigati...An important theoretic interest is to study the relations between different interconnection networks, and to compare the capability and performance of the network structures. The most popular way to do the investigation is network emulation. Based on the classical voltage graph theory, the authors develop a new representation scheme for interconnection network structures. The new approach is a combination of algebraic methods and combinatorial methods. The results demonstrate that the voltage graph theory is a powerful tool for representing well known interconnection networks and in implementing optimal network emulation algorithms, and in particular, show that all popular interconnection networks have very simple and intuitive representations under the new scheme. The new representation scheme also offers powerful tools for the study of network routings and emulations. For example, we present very simple constructions for optimal network emulations from the cube connected cycles networks to the butterfly networks, and from the butterfly networks to the hypercube networks. Compared with the most popular way of network emulation, this new scheme is intuitive and easy to realize, and easy to apply to other network structures.展开更多
Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA...Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA defines a kind of network architecture with mobility and trustworthiness, based upon the decoupling of end-host identity information from location information. This paper makes a brief description of the basic concepts and model structure that support network mobility and security. After introducing the key techniques in LISNA, the paper further illustrates how to promote the mobility handoff and to keep security association.展开更多
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
基金TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6 992 82 0 1) ,FoundationforUniversityKeyTeacherbytheMinistryofEducationandChangjiangScholarRewardProject.
文摘An important theoretic interest is to study the relations between different interconnection networks, and to compare the capability and performance of the network structures. The most popular way to do the investigation is network emulation. Based on the classical voltage graph theory, the authors develop a new representation scheme for interconnection network structures. The new approach is a combination of algebraic methods and combinatorial methods. The results demonstrate that the voltage graph theory is a powerful tool for representing well known interconnection networks and in implementing optimal network emulation algorithms, and in particular, show that all popular interconnection networks have very simple and intuitive representations under the new scheme. The new representation scheme also offers powerful tools for the study of network routings and emulations. For example, we present very simple constructions for optimal network emulations from the cube connected cycles networks to the butterfly networks, and from the butterfly networks to the hypercube networks. Compared with the most popular way of network emulation, this new scheme is intuitive and easy to realize, and easy to apply to other network structures.
文摘Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA defines a kind of network architecture with mobility and trustworthiness, based upon the decoupling of end-host identity information from location information. This paper makes a brief description of the basic concepts and model structure that support network mobility and security. After introducing the key techniques in LISNA, the paper further illustrates how to promote the mobility handoff and to keep security association.