In cognitive relay networks, the transmission of Secondary Users (SUs) suffers from the activity of Primary Users (PUs) and wireless channel fading. Therefore, how to achieve robust transmission for cognitive rela...In cognitive relay networks, the transmission of Secondary Users (SUs) suffers from the activity of Primary Users (PUs) and wireless channel fading. Therefore, how to achieve robust transmission for cognitive relay networks is a challenging task. In this paper, we propose a relaying transmission scheme which exploits robust beamforming at the physical layer and rateless codes at higher layers. We derive the optirml beamforng weight vector and analyze the perforrmnce of the pro- posed scheme when the channel estirmtion is not accurate between two SU nodes. We also study how the anaount of channel information between SU and PU impacts the system perforroance. Sinlation results validate our theoretical analysis and demonstrate that the proposed scheme can signifi- cantly enhance the system throughput.展开更多
A cognitive relay network model is proposed, which is defined by a source, a destination, a cognitive relay node and a primary user. The source is assisted by the cognitive relay node which is allowed to coexist with ...A cognitive relay network model is proposed, which is defined by a source, a destination, a cognitive relay node and a primary user. The source is assisted by the cognitive relay node which is allowed to coexist with the primary user by imposing severe constraints on the transmission power so that the quality of service of the primary user is not degraded by the interference caused by the secondary user. The effect of the cognitive relay node on the proposed cognitive relay network model is studied by evaluating the outage probability under interference power constraints for different fading environments. A relay transmission scheme, namely, decode-and-forward is considered. For both the peak and average interference power constraints, the closed-form outage expressions are derived over different channel fading models. Finally, the analytical outage probability expressions are validated through simulations. The results indicate that the proposed model has better outage probability than direct transmission. It is also found that the outage probability decreases with the increase of interference power constraints. Meanwhile, the outage probability under the average interference power constraint is much less than that under the peak interference power constraint when the average interference power constraint is equal to the peak interference power constraint.展开更多
Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications ne...Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications networks is not available in all countries especially the developing ones. A high cost and changing the design for the networks may be needed to construct this backbone. If data can be transmitted over the power-line networks, a recognized cost and time save can be achieved. In Egypt, the infrastructure is not always available for constructing a communications network backbone due to the already designed buildings before the need for these backbones. In this paper, we overcome this problem by designing a reliable Power-line Modem that operates safely on the low voltage grid. The modem is based on the Direct Sequence Spread Spectrum technique. It uses the mains zero crossing as an efficient way for the synchronization between the transmitter and the receiver. The Modem takes into account the problems of the Power-line including noise, attenuation and impedance dismatching.展开更多
基金Acknowledgements The authors would like to thank the editor and anonymous reviewers for their detailed reviews and constructive comments, which have helped to greatly improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grants No. 60832008, No. 60902001 Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education under Grant No. KZ201010009009 the Tsinghua National Laboratory for Infomation Science and Technology (TNList) Cross-discipline Foundation.
文摘In cognitive relay networks, the transmission of Secondary Users (SUs) suffers from the activity of Primary Users (PUs) and wireless channel fading. Therefore, how to achieve robust transmission for cognitive relay networks is a challenging task. In this paper, we propose a relaying transmission scheme which exploits robust beamforming at the physical layer and rateless codes at higher layers. We derive the optirml beamforng weight vector and analyze the perforrmnce of the pro- posed scheme when the channel estirmtion is not accurate between two SU nodes. We also study how the anaount of channel information between SU and PU impacts the system perforroance. Sinlation results validate our theoretical analysis and demonstrate that the proposed scheme can signifi- cantly enhance the system throughput.
基金Supported by National Natural Science Foundation of China (No. 60972039, 60905040 and 60972041 )National High Technology Research and Development Program of China (No. 2009AA01Z241)+3 种基金National Postdoctoral Research Program (No. 20090451239)Important National Science and Technology Specific Projects of China (No. 2009ZX03003-006)Scientific Research Foundation of Nanjing University of Posts and Telecommunications (No. NY210006)Key Teaching Reform Foundation of NUPT (No. JG00210JX01)
文摘A cognitive relay network model is proposed, which is defined by a source, a destination, a cognitive relay node and a primary user. The source is assisted by the cognitive relay node which is allowed to coexist with the primary user by imposing severe constraints on the transmission power so that the quality of service of the primary user is not degraded by the interference caused by the secondary user. The effect of the cognitive relay node on the proposed cognitive relay network model is studied by evaluating the outage probability under interference power constraints for different fading environments. A relay transmission scheme, namely, decode-and-forward is considered. For both the peak and average interference power constraints, the closed-form outage expressions are derived over different channel fading models. Finally, the analytical outage probability expressions are validated through simulations. The results indicate that the proposed model has better outage probability than direct transmission. It is also found that the outage probability decreases with the increase of interference power constraints. Meanwhile, the outage probability under the average interference power constraint is much less than that under the peak interference power constraint when the average interference power constraint is equal to the peak interference power constraint.
文摘Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications networks is not available in all countries especially the developing ones. A high cost and changing the design for the networks may be needed to construct this backbone. If data can be transmitted over the power-line networks, a recognized cost and time save can be achieved. In Egypt, the infrastructure is not always available for constructing a communications network backbone due to the already designed buildings before the need for these backbones. In this paper, we overcome this problem by designing a reliable Power-line Modem that operates safely on the low voltage grid. The modem is based on the Direct Sequence Spread Spectrum technique. It uses the mains zero crossing as an efficient way for the synchronization between the transmitter and the receiver. The Modem takes into account the problems of the Power-line including noise, attenuation and impedance dismatching.