In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the...In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.展开更多
Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not...Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10675060
文摘In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.
文摘Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.