期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大数据环境下不良网络内容识别技术研究 被引量:3
1
作者 孟彩霞 《软件导刊》 2015年第11期19-21,共3页
在大数据环境下对网络上的不良内容进行识别是实现网络侦查和信息监管的重要手段。当前主要采用人工识别方法,效率低下,可靠性差。提出一种基于奇异特征提取和聚类的大数据环境下不良网络内容识别技术,构建大数据环境下网络不良内容的... 在大数据环境下对网络上的不良内容进行识别是实现网络侦查和信息监管的重要手段。当前主要采用人工识别方法,效率低下,可靠性差。提出一种基于奇异特征提取和聚类的大数据环境下不良网络内容识别技术,构建大数据环境下网络不良内容的存储和数据传输模型,对不良内容进行信号模型构建,采用奇异特征提取方法对内容进行特征提取,以此为数据基础进行数据聚类分析,以实现对不良内容的准确识别。仿真实验表明,采用该算法对不良网络内容进行识别准确率较高,可有效实现网络信息的监管和跟踪。 展开更多
关键词 大数据 网络内容识别 聚类 特征提取
下载PDF
Exploring Content Popularity in Information-Centric Networks 被引量:1
2
作者 Andriana Ioannou Stefan Weber 《China Communications》 SCIE CSCD 2015年第7期13-22,共10页
Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic.... Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic. The employment of caches may be accomplished using graph-based and content-based criteria such as the position of a node in a network and content popularity. The contribution of this paper lies on the characterization of content popularity for on-path in-network caching. To this end, four dynamic approaches for identifying content popularity are evaluated via simulations. Content popularity may be determined per chunk or per object, calculated by the number of requests for a content against the sum of requests or the maximum number of requests. Based on the results, chunk-based approaches provide 23% more accurate content popularity calculations than object-based approaches. In addition, approaches that are based on the comparison of a content against the maximum number of requests have been shown to be more accurate than the alternatives. 展开更多
关键词 network distributed architectures future internet information-centric networks caching technologies on-path caching content popularity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部