Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addi...Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.展开更多
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin...The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).展开更多
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204,20936004)
文摘Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.
基金Supported by the National Natural Science Foundation of China(No.21376185)
文摘The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.