Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leavi...It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.展开更多
Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,d...Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.展开更多
The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use ...The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use of thermal energy, enabling also the provision of quality customer services, as the data concerning the status of the existing networks is available in a timely manner, and in the stated amounts. Over the last decades, the use of WSN systems in enabling quality monitoring of heat production and supply process has been widely discussed among various researchers and industry experts, but has been little deployed in practice. These researchers and industry experts have analysed the advantages and constraints related to the use of the WSN in district heating. A pilot project conducted by Riga Heat (the main heating supplier in Riga, Latvia) has allowed to gain a real life experience as to the use of the WSN system in district in-house heating substations, and is deemed to be a major step towards future development of WSN technologies.展开更多
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
文摘It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.
基金partially supported by National Natural Science Foundation of China(No. 61202475,61572294,61502218)Outstanding Young Scientists Foundation Grant of Shandong Province(No.BS2014DX016)+3 种基金Nature Science Foundation of Shandong Province (No.ZR2012FQ029)Ph.D.Programs Foundation of Ludong University(No.LY2015033)Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund(Fujian Normal University)(No.15004)the Priority Academic Program Development of Jiangsu Higer Education Institutions,Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology
文摘Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.
文摘The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use of thermal energy, enabling also the provision of quality customer services, as the data concerning the status of the existing networks is available in a timely manner, and in the stated amounts. Over the last decades, the use of WSN systems in enabling quality monitoring of heat production and supply process has been widely discussed among various researchers and industry experts, but has been little deployed in practice. These researchers and industry experts have analysed the advantages and constraints related to the use of the WSN in district heating. A pilot project conducted by Riga Heat (the main heating supplier in Riga, Latvia) has allowed to gain a real life experience as to the use of the WSN system in district in-house heating substations, and is deemed to be a major step towards future development of WSN technologies.