期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
论利用网络图理论优化瓦斯抽放系统
1
作者 张震 《现代商贸工业》 2013年第9期185-186,共2页
利用网络图理论对裴沟矿瓦斯抽放系统进行优化。研究了矿井抽放网络内瓦斯的流动规律,确定出瓦斯抽放系统的优化原则,计算出瓦斯抽放系统的阻力并给出了抽放系统的优化方案。通过利用网络图理论对瓦斯抽放系统进行优化,提高了矿井瓦斯... 利用网络图理论对裴沟矿瓦斯抽放系统进行优化。研究了矿井抽放网络内瓦斯的流动规律,确定出瓦斯抽放系统的优化原则,计算出瓦斯抽放系统的阻力并给出了抽放系统的优化方案。通过利用网络图理论对瓦斯抽放系统进行优化,提高了矿井瓦斯抽放的效率,对类似需要优化抽放系统的矿井具有借鉴价值。 展开更多
关键词 抽放系统 网络图理论 阻力 优化
下载PDF
平煤一矿瓦斯抽采系统的优化与应用 被引量:2
2
作者 孟杰 林柏泉 +3 位作者 李庆钊 宁俊 张萌博 李全贵 《中国煤炭》 北大核心 2011年第1期84-87,共4页
针对平煤一矿瓦斯抽放系统分散,致使局部地区瓦斯超限频繁、回风巷中瓦斯浓度偏高的现象,应用网络图理论、流体力学和瓦斯流动规律对其抽放系统进行优化,提出了统一、联网的抽放方法,应用结果表明,优化后的抽放系统总的抽放阻力是64 kPa... 针对平煤一矿瓦斯抽放系统分散,致使局部地区瓦斯超限频繁、回风巷中瓦斯浓度偏高的现象,应用网络图理论、流体力学和瓦斯流动规律对其抽放系统进行优化,提出了统一、联网的抽放方法,应用结果表明,优化后的抽放系统总的抽放阻力是64 kPa,而地面抽放系统的抽放泵的抽放能力最大是101 kPa,其工作时的抽放能力为90 kPa左右,同时瓦斯抽放浓度提高了11.5%,瓦斯治理效果明显。 展开更多
关键词 网络图理论 流体力学 瓦斯流动规律 瓦斯抽放系统
下载PDF
Oxygen Reduction Reaction Activity of Fe-based Dual-Atom Catalysts with Different Local Configurations via Graph Neural Representation
3
作者 Xueqian Xia Zengying Ma Yucheng Huang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期599-604,I0038-I0040,I0099,共10页
The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availa... The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availability of platinum have driven the search for alternative catalysts.While FeN4 single-atom catalysts have shown promising potential,their ORR activity needs to be further enhanced.In contrast,dual-atom catalysts(DACs)offer not only higher metal loading but also the ability to break the ORR scaling relations.However,the diverse local structures and tunable coordination environments of DACs create a vast chemical space,making large-scale computational screening challenging.In this study,we developed a graph neural network(GNN)-based framework to predict the ORR activity of Fe-based DACs,effectively addressing the challenges posed by variations in local catalyst structures.Our model,trained on a dataset of 180 catalysts,accurately predicted the Gibbs free energy of ORR intermediates and overpotentials,and identified 32 DACs with superior catalytic activity compared to FeN4 SAC.This approach not only advances the design of high-performance DACs,but also offers a powerful computational tool that can significantly reduce the time and cost of catalyst development,thereby accelerating the commercialization of fuel cell technologies. 展开更多
关键词 Oxygen reduction reaction Dual-atom catalyst Graph neural representation Density functional theory Artificial intelligence
下载PDF
A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification 被引量:2
4
作者 Alaeldin Suliman Yun Zhang 《Journal of Earth Science and Engineering》 2015年第1期52-65,共14页
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th... ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced. 展开更多
关键词 Artificial neural networks back propagation CLASSIFICATION remote sensing.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部