期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
网络基因图谱研究 被引量:2
1
作者 董新民 尹芷仪 +1 位作者 郭晓博 高能 《信息安全研究》 2016年第9期844-849,共6页
随着人-机-物三元日益深度融合,人类活动早已冲出原有现实空间的边界,出现线上和线下联动现象,这为行为失范、网络犯罪、从事危害国家安全等活动提供便利条件,且网络的匿名性、加密通信、移动性等特性加大管理部门的执法难度.因此受生... 随着人-机-物三元日益深度融合,人类活动早已冲出原有现实空间的边界,出现线上和线下联动现象,这为行为失范、网络犯罪、从事危害国家安全等活动提供便利条件,且网络的匿名性、加密通信、移动性等特性加大管理部门的执法难度.因此受生物基因启发,首次提出网络基因图谱概念,该图谱涵盖实体的生物属性、社会属性、网络属性,能突破现有身份认证容易伪造且难以虚实映射的问题,且具备如下优点:一是唯一标识实体;二是能够反映实体的本质特征;三是具备计算能力,可推理、补全、预测等.网络基因图谱将为全方位认知实体、跨域甄别实体、预防或打击实体犯罪等提供全新的技术支持,具有重大的理论和实践意义. 展开更多
关键词 网络基因片段 网络基因图谱 唯一性 多维性 可计算性 突变性
下载PDF
Parameters inversion of high central core rockfill dams based on a novel genetic algorithm 被引量:16
2
作者 ZHOU Wei LI Shao Lin +3 位作者 MA Gang CHANG Xiao Lin MA Xing ZHANG Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期783-794,共12页
Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical propertie... Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical properties of rockfill from laboratory tests. Parameters inversion based on in situ monitoring data has been proven to be an efficient method for identifying the exact parameters of the rockfill. In this paper, we propose a modified genetic algorithm to solve the high-dimension multimodal and nonlinear optimal parameters inversion problem. A novel crossover operator based on the sum of differences in gene fragments(So DX) is proposed, inspired by the cloning of superior genes in genetic engineering. The crossover points are selected according to the difference in the gene fragments, defining the adaptive length. The crossover operator increases the speed and accuracy of algorithm convergence by reducing the inbreeding and enhancing the global search capability of the genetic algorithm. This algorithm is compared with two existing crossover operators. The modified genetic algorithm is then used in combination with radial basis function neural networks(RBFNN) to perform the parameters back analysis of a high central earth core rockfill dam. The settlements simulated using the identified parameters show good agreement with the monitoring data, illustrating that the back analysis is reasonable and accurate. The proposed genetic algorithm has considerable superiority for nonlinear multimodal parameter identification problems. 展开更多
关键词 rockfill dam parameters back analysis genetic algorithm crossover operator sum of differences in gene fragments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部