This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbin...This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.展开更多
文摘This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.