期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一种双通道半监督网络表示学习模型
1
作者 杜航原 谢富中 +1 位作者 王文剑 白亮 《大数据》 2024年第4期106-120,共15页
在半监督网络表示学习中,节点标签对于网络在不同空间中映射关系的建立具有重要指导意义。然而在很多实际任务中,可用标签信息往往比较有限或难以获取,这导致在学习网络低维表示的过程中无法提供充分有效的监督。针对这一问题,提出了一... 在半监督网络表示学习中,节点标签对于网络在不同空间中映射关系的建立具有重要指导意义。然而在很多实际任务中,可用标签信息往往比较有限或难以获取,这导致在学习网络低维表示的过程中无法提供充分有效的监督。针对这一问题,提出了一种双通道半监督网络表示学习模型,该模型以自编码器为基本框架,由自监督和半监督两个信息传递通道构成。自监督信号与标签信息分别在两个通道中对网络表示映射关系的建立提供指导,同时二者之间形成信息互补与增强。考虑到两个通道间可能存在信息冗余,在互信息视角下设计了冗余识别与消除机制。在此基础上,构造了一体化优化模型,实现自监督学习与半监督学习的协同,使学习到的网络表示更好地捕捉和保持网络的结构和特性。在真实数据集上的实验结果表明,提出的模型学习的网络表示在节点分类、聚类和可视化等任务中能够获得优于基线方法的性能。 展开更多
关键词 监督网络表示学习 标签信息 监督学习 互信息 图神经网络
下载PDF
一种端到端弱监督学习网络模型的中国画情感识别 被引量:4
2
作者 卢克斌 殷守林 《哈尔滨理工大学学报》 CAS 北大核心 2022年第1期69-78,共10页
情感识别是计算机视觉研究中的一个热点,研究中国画表现的情感对于作品鉴赏工作具有重要意义。为了提高识别性能,针对传统卷积神经网络用于提取中国画的局部区域信息会导致有效信息丢失的问题,文章提出一种基于端到端弱监督学习网络方... 情感识别是计算机视觉研究中的一个热点,研究中国画表现的情感对于作品鉴赏工作具有重要意义。为了提高识别性能,针对传统卷积神经网络用于提取中国画的局部区域信息会导致有效信息丢失的问题,文章提出一种基于端到端弱监督学习网络方法对中国画情感进行识别。提出的学习网络由2个分类模块和1个情感强度预测模块组成。首先,在改进特征金字塔网络的基础上构建强度预测通道,提取多层次特征。使用基于梯度的类激活映射技术从第一个分类通道生成伪强度映射图,以指导提出的网络进行情感强度学习。将预测的强度图输入到第二分类通道中进行最终的中国画情感识别。最后,在公开数据集上对提出的方法进行了验证,实验结果表明,所提出的网络就混淆矩阵、平均分类准确率、平均情感识别率分别提高了10%,15%和13%。 展开更多
关键词 中国画情感识别 端到端弱监督学习网络 情感强度图 基于梯度的类激活映射
下载PDF
基于BCI的在线教育质量监测系统 被引量:1
3
作者 杨宁 史倩 +1 位作者 俞俊杰 魏亚州 《中国现代教育装备》 2020年第19期7-9,共3页
2020年初突发新型冠状病毒肺炎疫情,各级各类学校都采用了网络授课的全新尝试。但是学生的课堂学习效率无法得到保障。提高学生在线学习质量迫在眉睫,为此提出了一种基于脑-机接口技术(BCI)的在线教育质量监测系统。
关键词 脑-机接口 信号处理 网络学习监督 集中度检测反馈
下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
4
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
下载PDF
Semi-Supervised Learning Based Big Data-Driven Anomaly Detection in Mobile Wireless Networks 被引量:6
5
作者 bilal hussain qinghe du pinyi ren 《China Communications》 SCIE CSCD 2018年第4期41-57,共17页
With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different lev... With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different levels of network architecture and is typically underutilized. To unleash its full value, innovative machine learning algorithms need to be utilized in order to extract valuable insights which can be used for improving the overall network's performance. Additionally, a major challenge for network operators is to cope up with increasing number of complete(or partial) cell outages and to simultaneously reduce operational expenditure. This paper contributes towards the aforementioned problems by exploiting big data generated from the core network of 4 G LTE-A to detect network's anomalous behavior. We present a semi-supervised statistical-based anomaly detection technique to identify in time: first, unusually low user activity region depicting sleeping cell, which is a special case of cell outage; and second, unusually high user traffic area corresponding to a situation where special action such as additional resource allocation, fault avoidance solution etc. may be needed. Achieved results demonstrate that the proposed method can be used for timely and reliable anomaly detection in current and future cellular networks. 展开更多
关键词 5G 4G LTE-A anomaly detec-tion call detail record machine learning bigdata analytics network behavior analysis sleeping cell
下载PDF
Approach to Anomaly Traffic Detection in a Local Network
6
作者 王秀英 肖立中 邵志清 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期656-661,共6页
The research intends to solve the problem of the occupation of bandwidth of local network by abnormal traffic which affects normal user's network behaviors.Firstly,a new algorithm in this paper named danger-theory... The research intends to solve the problem of the occupation of bandwidth of local network by abnormal traffic which affects normal user's network behaviors.Firstly,a new algorithm in this paper named danger-theory-based abnormal traffic detection was presented.Then an advanced ID3 algorithm was presented to classify the abnormal traffic.Finally a new model of anomaly traffic detection was built upon the two algorithms above and the detection results were integrated with firewall.The firewall limits the bandwidth based on different types of abnormal traffic.Experiments show the outstanding performance of the proposed approach in real-time property,high detection rate,and unsupervised learning. 展开更多
关键词 clanger theory information enlropy ID3 algorithm abnormal traffic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部