期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
科学家相关性测度典型算法比较与评析 被引量:2
1
作者 吴振新 单嵩岩 《数字图书馆论坛》 CSSCI 2019年第3期11-17,共7页
调研科技文献作者相关性研究发展进展,对作者相关度算法进行系统化的分析和对比。从网络拓扑相似度算法入手,梳理和分析面向合作预测领域的作者相关度算法,分析和比较各种常用算法的优劣。对科技文献作者相关度算法进行系统梳理,分析重... 调研科技文献作者相关性研究发展进展,对作者相关度算法进行系统化的分析和对比。从网络拓扑相似度算法入手,梳理和分析面向合作预测领域的作者相关度算法,分析和比较各种常用算法的优劣。对科技文献作者相关度算法进行系统梳理,分析重点方法的基本原理、优缺点并展望未来发展方向。 展开更多
关键词 作者相关 网络拓扑相似度 科研合作预测
下载PDF
面向科研合作预测领域的作者相关度算法分析
2
作者 单嵩岩 吴振新 《图书馆理论与实践》 CSSCI 2019年第11期58-62,共5页
文章从网络拓扑相似度算法入手,梳理和分析了面向合作预测领域的作者相关度算法,分析和比较了各种常用算法的优劣以及目前的应用情况,对作者相关度算法进行系统梳理,分析重点方法的基本原理、优缺点并展望其未来发展方向。
关键词 作者相关 网络拓扑相似度 科研合作预测
下载PDF
Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks 被引量:6
3
作者 LI Min LI Qi +3 位作者 GANEGODA Gamage Upeksha WANG JianXin WU FangXiang PAN Yi 《Science China(Life Sciences)》 SCIE CAS 2014年第11期1064-1071,共8页
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing gen... Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes. 展开更多
关键词 disease-causing genes PRIORITIZATION gene ontology protein interaction network shortest path
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部