Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mo...Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.展开更多
The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control ...The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control models are based on the single layer network architecture,and the sendersand receivers are directly connected by one pair of routers.With the network architecture being moreand more complex,it is a serious problem how to cooperate many routers working in the multilayernetwork simultaneously.In this paper,an effective Active Queue Management(AQM)scheme toguarantee the stability by the nonlinear control of imposing some restrictions on AQM parameter inmultilayer network is proposed.The nonlinear control can rely on some heuristics and network trafficcontrollers that appear to be highly correlated with the multilayer network status.The proposedmethod is based on the improved classical Random Early Detection(RED)differential equation and atheorem for network congestion control.The theorem proposed in the paper proved that the stability ofthe fluid model can effectively ensure the convergence of the average rate to its equilibrium pointthrough many routers in multilayer network.Moreover,when the network capacity is larger,theproposed scheme can still approach to the fullest extensibility of utilization and ensure the stability ofthe fluid model.The paper reveals the reasons of congestion control in multilayer network,provides atheorem for avoiding network congestion,and gives simulations to verify the results.展开更多
In Vehicle-to-infrastructure(V2I)communication networks,mobile users are able to access Internet services,such as video streaming,digital map downloading,database access,online gaming,and even safety services like acc...In Vehicle-to-infrastructure(V2I)communication networks,mobile users are able to access Internet services,such as video streaming,digital map downloading,database access,online gaming,and even safety services like accident alarm,traffic condition broadcast,etc.,through fixed roadside units.However,the dynamics of communication environment and frequent changing topology critically challenge the design of an efficient transport layer protocol,which makes it difficult to guarantee diverse Quality of Service(QoS) requirements for various applications.In this paper,we present a novel transport layer scheme in infrastructure based vehicular networks,and aim to resolve some challenging issues such as source transfer rate adjustment,congestion avoidance,and fairness.By precisely detecting packet losses and identifying various causes of these losses(for example,link disconnection,channel error,packet collision,buffer overflow),the proposed scheme adopts different reacting mechanisms to deal with each of the losses.Moreover,it timely monitors the buffer size of the bottleneck Road-Side Unit(RSU),and dynamically makes transfer rate feedbacks to source nodes to avoid buffer overflow or vacancy.Finally,analysis and simulation results show that the proposed scheme not only successfully reduces packet losses because of buffer overflow and link disconnection but also improves the utilization efficiency of channel resource.展开更多
Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects,network congestion avoidance strategy is designed in pipeline leak monitoring.Based on the prop...Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects,network congestion avoidance strategy is designed in pipeline leak monitoring.Based on the property of Markov chain for network data,a new estimator with particle filter is proposed for congestion control in this paper.The proposed scheme can predict the traffic patterns by the decision-making model.To compare with previous scheme based on fuzzy neural network,the proposed scheme can adaptively adjust the network rate in real-time and reduce the cell loss rate,so that it can avoid the traffic congestion.Simulation results show that network congestion avoidance strategy with particle filter can improve the bandwidth utilization,Transmission Control Protocol (TCP) friendliness and reduce the packet drop rate in Pipeline Flux Leak Monitoring networks.展开更多
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from...In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.展开更多
In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VAN...In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VANETs) based on standard IEEE 802.11 p and IEEE 802.11 s WMNs (Wireless Mesh Networks). Simulation experiments are intensively investigated to evaluate the novel combined priority and admission control mechanism to assure quality of the I2V (Infrastructure to Vehicle) emergency services occurred during the time video flows are being delivered between content servers and cars. The simulation results show effectiveness of proposed priority and admission control schemes in term of the minimized end-to-end delay as well as the increase of throughput and PDR (Packet Delivery Ratio) of the emergency data flow.展开更多
Network measurement is an important approach to understand network behaviors, which has been widely studied. Both Transfer Control Protocol (TCP) and Interact Control Messages Protocol (ICMP) are applied in networ...Network measurement is an important approach to understand network behaviors, which has been widely studied. Both Transfer Control Protocol (TCP) and Interact Control Messages Protocol (ICMP) are applied in network measurement, while investigating the differences between the measured results of these two protocols is an important topic that has been less investigated. In this paper, to compare the differences between TCP and ICMP when they are used in measuring host connectivity, RTT, and packet loss rate, two groups of comparison programs have been designed, and after careful evaluation of the program parameters, a lot of comparison experiments are executed on the Internet. The experimental results show that, there are significant differences between the host connectivity measured using TCP or ICMP; in general, the accuracy of connectivity measured using TCP is 20%- 30% higher than that measured using ICMP. The case of RTT and packet loss rate is complicated, which are related to path loads and destination host loads. While commonly, the RTF and packet loss rate" measured using TCP or ICMP are very close. According to the experimental results, some advices are also given on protocol selection for conducting accurate connectivity, RTF and packet loss rate measurements.展开更多
OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Trans...OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.展开更多
the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrast...the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrastructure of Internet, which hinders its deployment and development. Meanwhile, Software Defined Networking(SDN) emerges as a viable solution to facilitate the deployment of new network paradigm without disrupting production traffic by decoupling the control plane from data forwarding plane. In this paper, the essential properties which reflect ICN working principles are summarized, and a framework called SDICN is designed in accordance to the SDN philosophy. The algorithmic frameworks of SDICN which can satisfy the essential properties are designed based on the programmability and virtualization functions of SDN. Based on Open Flow and data center technology, a prototype of SDICN is implemented. By comparing the performance with the CCNx, the SDICN is proved to be feasibility and availability.展开更多
The network delay of the periodic messages transmission in the network control system (NCS) based on Ethemet for plant automation (EPA) is analyzed from the theoretical and experimental perspective in this paper. ...The network delay of the periodic messages transmission in the network control system (NCS) based on Ethemet for plant automation (EPA) is analyzed from the theoretical and experimental perspective in this paper. The composition and the characteristics of the network delay of EPA periodic messages transmission in a subnet is studied through analyzing the information transmission regularity and EPA deterministic scheduling mechanism. On this basis, the queuing delay at communication schedule management entity (EPA _ CSME) that is the most important component of network delay is analyzed, during which the formulas for the queuing delay of periodic messages and other real time parameters are proposed. Furthermore, an experiment is developed to test each component of network delay of periodic messages transmission in a EPA subnet. According to the experimental and the theoretical analysis, the conclusion is drawn that the delay during which the periodic messages wait for the periodic messages transmission time slice is the main factor that causes considerable network delay, and improvement method is presented.展开更多
基金supported in part by Fundamental Research Funds for the Central Universities of China under Grant(N140405004) partly by National Natural Science Foundation of China(61373159)+1 种基金partly by Educational Committee of Liaoning Province science and technology research projects under Grant (L2013096)partly by Key Laboratory Project Funds of Shenyang Ligong University (4771004kfs03)
文摘Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.
基金the National Natural Science Foundation of China(No.60572093)the Specialized Research Fundfor the Doctoral Program of Higher Education(No.20050004016).
文摘The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control models are based on the single layer network architecture,and the sendersand receivers are directly connected by one pair of routers.With the network architecture being moreand more complex,it is a serious problem how to cooperate many routers working in the multilayernetwork simultaneously.In this paper,an effective Active Queue Management(AQM)scheme toguarantee the stability by the nonlinear control of imposing some restrictions on AQM parameter inmultilayer network is proposed.The nonlinear control can rely on some heuristics and network trafficcontrollers that appear to be highly correlated with the multilayer network status.The proposedmethod is based on the improved classical Random Early Detection(RED)differential equation and atheorem for network congestion control.The theorem proposed in the paper proved that the stability ofthe fluid model can effectively ensure the convergence of the average rate to its equilibrium pointthrough many routers in multilayer network.Moreover,when the network capacity is larger,theproposed scheme can still approach to the fullest extensibility of utilization and ensure the stability ofthe fluid model.The paper reveals the reasons of congestion control in multilayer network,provides atheorem for avoiding network congestion,and gives simulations to verify the results.
基金ACKNOWLEDGEMENT This work was partially supported by the Na- tional Natural Science Foundation of China under Grant No. 61101121 the Fundamental Research Funds for the Central Universities of China under Grant No. N110404002+2 种基金 the Key Laboratory Project Funds of Shenyang Ligong University under Grant No. 4771004kfs03 the Educational Committee of Liaoning Province Science and Technology Research Projects under Grant No. L2013096 the National Sci- ence and Technology Support Program under Grant No. 2012BAH82F04.
文摘In Vehicle-to-infrastructure(V2I)communication networks,mobile users are able to access Internet services,such as video streaming,digital map downloading,database access,online gaming,and even safety services like accident alarm,traffic condition broadcast,etc.,through fixed roadside units.However,the dynamics of communication environment and frequent changing topology critically challenge the design of an efficient transport layer protocol,which makes it difficult to guarantee diverse Quality of Service(QoS) requirements for various applications.In this paper,we present a novel transport layer scheme in infrastructure based vehicular networks,and aim to resolve some challenging issues such as source transfer rate adjustment,congestion avoidance,and fairness.By precisely detecting packet losses and identifying various causes of these losses(for example,link disconnection,channel error,packet collision,buffer overflow),the proposed scheme adopts different reacting mechanisms to deal with each of the losses.Moreover,it timely monitors the buffer size of the bottleneck Road-Side Unit(RSU),and dynamically makes transfer rate feedbacks to source nodes to avoid buffer overflow or vacancy.Finally,analysis and simulation results show that the proposed scheme not only successfully reduces packet losses because of buffer overflow and link disconnection but also improves the utilization efficiency of channel resource.
基金Xinjiang Production and Construction Corps Reforms Project Courses,China(No.200905)Tarim University Principal Youth Fund, China(No.TDZKQN05002)Tarim University Quality of Higher Education Courses and Research Funding,China(No.TDGJ0914)
文摘Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects,network congestion avoidance strategy is designed in pipeline leak monitoring.Based on the property of Markov chain for network data,a new estimator with particle filter is proposed for congestion control in this paper.The proposed scheme can predict the traffic patterns by the decision-making model.To compare with previous scheme based on fuzzy neural network,the proposed scheme can adaptively adjust the network rate in real-time and reduce the cell loss rate,so that it can avoid the traffic congestion.Simulation results show that network congestion avoidance strategy with particle filter can improve the bandwidth utilization,Transmission Control Protocol (TCP) friendliness and reduce the packet drop rate in Pipeline Flux Leak Monitoring networks.
基金The authors would like to thank the reviewers for their de-tailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grant No. 61101107 the Scientific Research and Innovation Plan for the Youth of BUPT under Grant No. 2011RC0305 the National International Science and Technology Cooperation Project under Grant No. 2010DFA11320.
文摘In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.
文摘In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VANETs) based on standard IEEE 802.11 p and IEEE 802.11 s WMNs (Wireless Mesh Networks). Simulation experiments are intensively investigated to evaluate the novel combined priority and admission control mechanism to assure quality of the I2V (Infrastructure to Vehicle) emergency services occurred during the time video flows are being delivered between content servers and cars. The simulation results show effectiveness of proposed priority and admission control schemes in term of the minimized end-to-end delay as well as the increase of throughput and PDR (Packet Delivery Ratio) of the emergency data flow.
基金This work was financially supported by National Natural Science Foundation of China under grant60273070and60403031,and theNational high-Technology (863) Programunder grant2005AA121560
文摘Network measurement is an important approach to understand network behaviors, which has been widely studied. Both Transfer Control Protocol (TCP) and Interact Control Messages Protocol (ICMP) are applied in network measurement, while investigating the differences between the measured results of these two protocols is an important topic that has been less investigated. In this paper, to compare the differences between TCP and ICMP when they are used in measuring host connectivity, RTT, and packet loss rate, two groups of comparison programs have been designed, and after careful evaluation of the program parameters, a lot of comparison experiments are executed on the Internet. The experimental results show that, there are significant differences between the host connectivity measured using TCP or ICMP; in general, the accuracy of connectivity measured using TCP is 20%- 30% higher than that measured using ICMP. The case of RTT and packet loss rate is complicated, which are related to path loads and destination host loads. While commonly, the RTF and packet loss rate" measured using TCP or ICMP are very close. According to the experimental results, some advices are also given on protocol selection for conducting accurate connectivity, RTF and packet loss rate measurements.
基金High-Tech Research and DevelopmentProgram of China (No. 2003AA123310)
文摘OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.
基金supported by the State Key Development Program for Basic Research of China under Grant No.2012CB315806National Natural Science Foundation of China(No.61379149,No.61402521 and No.61103225)+1 种基金Natural Science Foundation of Jiangsu(BK 20140070,BK20140068)Jiangsu Future Network Innovation Institute Research Project on Future Networks(BY2013095-1-06)
文摘the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrastructure of Internet, which hinders its deployment and development. Meanwhile, Software Defined Networking(SDN) emerges as a viable solution to facilitate the deployment of new network paradigm without disrupting production traffic by decoupling the control plane from data forwarding plane. In this paper, the essential properties which reflect ICN working principles are summarized, and a framework called SDICN is designed in accordance to the SDN philosophy. The algorithmic frameworks of SDICN which can satisfy the essential properties are designed based on the programmability and virtualization functions of SDN. Based on Open Flow and data center technology, a prototype of SDICN is implemented. By comparing the performance with the CCNx, the SDICN is proved to be feasibility and availability.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA040301-4, 2007AA041301-6 2007AA041407).
文摘The network delay of the periodic messages transmission in the network control system (NCS) based on Ethemet for plant automation (EPA) is analyzed from the theoretical and experimental perspective in this paper. The composition and the characteristics of the network delay of EPA periodic messages transmission in a subnet is studied through analyzing the information transmission regularity and EPA deterministic scheduling mechanism. On this basis, the queuing delay at communication schedule management entity (EPA _ CSME) that is the most important component of network delay is analyzed, during which the formulas for the queuing delay of periodic messages and other real time parameters are proposed. Furthermore, an experiment is developed to test each component of network delay of periodic messages transmission in a EPA subnet. According to the experimental and the theoretical analysis, the conclusion is drawn that the delay during which the periodic messages wait for the periodic messages transmission time slice is the main factor that causes considerable network delay, and improvement method is presented.