期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于层次结构的无线传感器网络时间同步研究 被引量:2
1
作者 诸军 马娜 +3 位作者 吴波 黄薛凌 徐强 苑广欣 《电气自动化》 2014年第5期33-34,37,共3页
结合变电站运维管理的工业现场特点,和无线传感器网络时间同步协议的研究,提出了汇聚节点的双向时间同步定时偏差补偿与传感节点虚拟双向同步相结合的时间同步算法。在网络部署的初期,按照模型布置网关节点和汇聚节点,汇聚节点和传感节... 结合变电站运维管理的工业现场特点,和无线传感器网络时间同步协议的研究,提出了汇聚节点的双向时间同步定时偏差补偿与传感节点虚拟双向同步相结合的时间同步算法。在网络部署的初期,按照模型布置网关节点和汇聚节点,汇聚节点和传感节点采用不同的时间同步方法。仿真实验表明网络收敛时间和同步精度具有良好性能。 展开更多
关键词 时间同步TPSN 无线传感器网络 同步精度 网络收敛性 时间戳
下载PDF
基于最大重叠离散小波变换和深度学习的光伏功率预测
2
作者 马乐乐 孔小兵 +2 位作者 郭磊 刘源延 刘向杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期576-583,共8页
针对光伏功率时间序列的非平稳特性,提出一种基于最大重叠离散小波变换(MODWT)和长短期记忆网络(LSTM)的光伏功率组合预测模型。利用皮尔逊相关系数确定影响光伏功率的重要气象因素,基于MODWT算法对历史光伏功率序列进行分解,将选取的... 针对光伏功率时间序列的非平稳特性,提出一种基于最大重叠离散小波变换(MODWT)和长短期记忆网络(LSTM)的光伏功率组合预测模型。利用皮尔逊相关系数确定影响光伏功率的重要气象因素,基于MODWT算法对历史光伏功率序列进行分解,将选取的气象因素与分解得到的平稳子序列共同构成各个LSTM网络输入,通过汇总重构每个LSTM网络的子序列预测结果得到最终的光伏功率预测结果。从理论层面分析所建立的MODWT算法的完全重构性,并基于李雅普诺夫稳定性定理推导保证预测网络收敛的学习率范围。仿真对比结果显示,所提出的光伏功率预测模型在预测精度和鲁棒性方面具有明显优势。 展开更多
关键词 光伏功率预测 长短期记忆网络 非平稳时间序列分解 预测网络收敛性
下载PDF
求解二次规划问题的离散时间神经网络的收敛性分析
3
作者 路洋 李德伟 +1 位作者 席裕庚 卢建波 《系统科学与数学》 CSCD 北大核心 2012年第11期1343-1353,共11页
对求解二次规划问题的离散时间神经网络的收敛性进行了分析,通过选取适当的李雅普诺夫函数给出了网络全局收敛的充分条件,并在该条件下研究了网络的收敛速度,分别对问题的不等式约束左矩阵行满秩和非行满秩的情况进行了讨论,得到了在上... 对求解二次规划问题的离散时间神经网络的收敛性进行了分析,通过选取适当的李雅普诺夫函数给出了网络全局收敛的充分条件,并在该条件下研究了网络的收敛速度,分别对问题的不等式约束左矩阵行满秩和非行满秩的情况进行了讨论,得到了在上述充分条件下对于不等式约束左矩阵行满秩和非行满秩的问题均有网络指数收敛的结论,通过仿真验证了结论的正确性. 展开更多
关键词 二次规划 神经网络 离散时间 收敛
原文传递
Dynamic analysis of stochastic delayed cellular neural networks
4
作者 朱恩文 王勇 邹捷中 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期658-661,共4页
The stability of stochastic delayed cellular neural networks(DCNNs) is investigated in this paper. Under the help of Lyapunov functional and the semimartingale convergence theorem, some sufficient criteria were obtain... The stability of stochastic delayed cellular neural networks(DCNNs) is investigated in this paper. Under the help of Lyapunov functional and the semimartingale convergence theorem, some sufficient criteria were obtained to check the almost sure exponential stability of the DCNNs. 展开更多
关键词 Cellular neural network Almost sure exponential stability Lyapunov functional
下载PDF
Convergence Analysis and Its Application in the Fixed Point Formulation of Medium Access in Wireless Network
5
作者 周安福 刘敏 焦学武 《China Communications》 SCIE CSCD 2011年第1期43-49,共7页
In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property ... In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method. 展开更多
关键词 resource allocation in wireless networks DCF fixed point formulation convergence property
下载PDF
A Novel Neural Network for Linear Complementarity Problems
6
作者 李阳 金丽 张立卫 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第3期539-546,共8页
In this paper, we present a neural network for solving linear complementarity problem in real time. It possesses a very simple structure for implementation in hardware. In the theoretical aspect, this network is diffe... In this paper, we present a neural network for solving linear complementarity problem in real time. It possesses a very simple structure for implementation in hardware. In the theoretical aspect, this network is different from the existing networks which use the penalty functions or Lagrangians. We prove that the proposed neural network converges globally to the solution set of the problem starting from any initial point. In addition, the stability of the related differential equation system is analyzed and five numerical examples are given to verify the validity of the neural network. 展开更多
关键词 neural network linear complementarity CONVERGENCE STABILITY
下载PDF
Finite Convergence of On-line BP Neural Networks with Linearly Separable Training Patterns 被引量:1
7
作者 邵郅邛 吴微 杨洁 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第3期451-456,共6页
In this paper we prove a finite convergence of online BP algorithms for nonlinear feedforward neural networks when the training patterns are linearly separable.
关键词 nonlinear feedforward neural networks online BP algorithms finite convergence linearly separable training patterns.
下载PDF
A NEW NEURAL NETWORK-BASED ADAPTIVE ILC FOR NONLINEAR DISCRETE-TIME SYSTEMS WITH DEAD ZONE SCHEME 被引量:2
8
作者 Ronghu CHI Zhongsheng HOU 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期435-445,共11页
By introducing a deadwzone scheme, a new neural network based adaptive iterative learning control (ILC) (NN-AILC) scheme is presented for nonlinear discrete-time systems, where the NN weights are time-varying. The... By introducing a deadwzone scheme, a new neural network based adaptive iterative learning control (ILC) (NN-AILC) scheme is presented for nonlinear discrete-time systems, where the NN weights are time-varying. The most distinct contribution of the proposed NN-AILC is the relaxation of the identical conditions of initial state and reference trajectory, which are common requirements in traditional ILC problems. Convergence analysis indicates that the tracking error converges to a bounded ball, whose size is determined by the dead-zone nonlinearity. Computer simulations verify the theoretical results. 展开更多
关键词 Adaptive control iterative learning control neural network non-identical initial condition non-identical trajectory.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部