A kind of attack strategy based on a probabilistic cloning machine is proposed in this letter. The security of BB84 and the six-state quantum key distribution protocols under this attack is studied by theoretic analys...A kind of attack strategy based on a probabilistic cloning machine is proposed in this letter. The security of BB84 and the six-state quantum key distribution protocols under this attack is studied by theoretic analyses and corroborated by simulations. It is concluded that the quantum key distribution protocols still have an asymptotic perfect security even if the eavesdropper adopts the proposed attack strategy.展开更多
Network spoofing attacks are very specialized attacks, and network security managers brought a severe test. In this paper, through the analysis of the ARP protocol works, it discusses ARP protocol AR P virus are two c...Network spoofing attacks are very specialized attacks, and network security managers brought a severe test. In this paper, through the analysis of the ARP protocol works, it discusses ARP protocol AR P virus are two common attacks from the IP address to the security risks that exist in the physical address resolution process, and then analyzes in detail, and then introduces the AR P Find virus source and virus removal methods, and finally putting forward effective measures to guard against AR P virus.展开更多
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while...The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.展开更多
文摘A kind of attack strategy based on a probabilistic cloning machine is proposed in this letter. The security of BB84 and the six-state quantum key distribution protocols under this attack is studied by theoretic analyses and corroborated by simulations. It is concluded that the quantum key distribution protocols still have an asymptotic perfect security even if the eavesdropper adopts the proposed attack strategy.
文摘Network spoofing attacks are very specialized attacks, and network security managers brought a severe test. In this paper, through the analysis of the ARP protocol works, it discusses ARP protocol AR P virus are two common attacks from the IP address to the security risks that exist in the physical address resolution process, and then analyzes in detail, and then introduces the AR P Find virus source and virus removal methods, and finally putting forward effective measures to guard against AR P virus.
基金Key Project of the Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-3National Natural Science Foundation of China,No.41501490
文摘The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.