The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in...The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.展开更多
This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere i...This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.展开更多
In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based f...In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.展开更多
基金the National Basic Research Program (973) of China (No. 2004CB217902)the National Natural Science Foundation of China (Nos. 60421002 and 60804045)the Postdoctoral Science Foundation of China (No. 20070421163)
文摘The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.
文摘This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.
文摘In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.