Energy conservation in Wireless Sensor Networks (WSNs) has always been a crucial issue and has received increased attention in the recent years. A transmission scheme for energy-constrained WSNs is proposed in this pa...Energy conservation in Wireless Sensor Networks (WSNs) has always been a crucial issue and has received increased attention in the recent years. A transmission scheme for energy-constrained WSNs is proposed in this paper. The scheme, called MIHOP (MIMO and Multi-hop), combines cluster-based virtual MIMO and multi-hop technologies. The multihop mode is employed in transmitting data when the related sensors are located within a specific number of hops from the sink, and the virtual MIMO mode is used in transmitting data from the remaining sensor nodes. We compare the energy consumption of different transmission schemes and propose an algorithm for determining the optimal hop count in MIHOP. A controllable mobile sink that reduces the energy consumed in sensor transmission is also adopted for data collection. The theoretical analysis and the Monte Carlo simulation demonstrate that the proposed scheme significantly outperforms individual virtual MIMO, multi-hop technologies, and double-string networks in terms of energy conservation. The energy consumption levels under the MIHOP scheme are approximately 12.98%, 47.55% and 48.30% less than that under virtual MIMO schemes, multi-hop networks and doublestring networks, respectively.展开更多
基金funded by National Natural Science Foundation of China under Grant No.61171107Beijing Natural Science Foundation under Grant No.4122034+1 种基金863 Program of China under Grant No.2011AA100706the Fundamental Research Funds for the Central Universities under Grant No.G470519
文摘Energy conservation in Wireless Sensor Networks (WSNs) has always been a crucial issue and has received increased attention in the recent years. A transmission scheme for energy-constrained WSNs is proposed in this paper. The scheme, called MIHOP (MIMO and Multi-hop), combines cluster-based virtual MIMO and multi-hop technologies. The multihop mode is employed in transmitting data when the related sensors are located within a specific number of hops from the sink, and the virtual MIMO mode is used in transmitting data from the remaining sensor nodes. We compare the energy consumption of different transmission schemes and propose an algorithm for determining the optimal hop count in MIHOP. A controllable mobile sink that reduces the energy consumed in sensor transmission is also adopted for data collection. The theoretical analysis and the Monte Carlo simulation demonstrate that the proposed scheme significantly outperforms individual virtual MIMO, multi-hop technologies, and double-string networks in terms of energy conservation. The energy consumption levels under the MIHOP scheme are approximately 12.98%, 47.55% and 48.30% less than that under virtual MIMO schemes, multi-hop networks and doublestring networks, respectively.