期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于神经网络融合模型的铁路接触网异物智能检测
1
作者 郭昊 万天义 +2 位作者 于潇 李新凯 刘文栋 《铁路计算机应用》 2024年第7期1-6,共6页
针对影响铁路接触网正常运行的异物问题,提出了一种基于神经网络融合模型的铁路接触网异物智能检测模型。以Faster R-CNN框架为基础,增加特征金字塔结构以学习图像不同尺度的特征;针对不同异物类型,将其分为鸟巢和轻质漂浮物,并运用ResN... 针对影响铁路接触网正常运行的异物问题,提出了一种基于神经网络融合模型的铁路接触网异物智能检测模型。以Faster R-CNN框架为基础,增加特征金字塔结构以学习图像不同尺度的特征;针对不同异物类型,将其分为鸟巢和轻质漂浮物,并运用ResNet50和ResNet101作为骨架网络,分别针对具有单一特征的鸟巢和特征复杂多变的轻质漂浮物进行识别;融合2个网络的识别框,得到精确的识别结果。对比实验表明,该模型的检测结果优于常规目标检测方法,可有效降低铁路接触网异物检测的人工成本,为铁路接触网的稳定运营提供了可行的解决方案。 展开更多
关键词 深度学习 接触网 异物检测 神经网络融合模型 鸟巢 轻质漂浮物
下载PDF
自适应多保真数据融合的神经网络模型
2
作者 陈柏宁 谢芳芳 孟旭辉 《气体物理》 2024年第4期1-8,共8页
数据驱动的深度学习建模在力学、材料等不同学科中得到了较多应用。深度学习建模的精度依赖大量高保真数据。在实际应用中,高保真数据往往是少量且昂贵的,而低保真数据却是成本低廉且数量较多的。当高保真数据量过少时,深度学习建模精... 数据驱动的深度学习建模在力学、材料等不同学科中得到了较多应用。深度学习建模的精度依赖大量高保真数据。在实际应用中,高保真数据往往是少量且昂贵的,而低保真数据却是成本低廉且数量较多的。当高保真数据量过少时,深度学习建模精度较低。近期发展的多保真深度神经网络,通过融合不同保真度的数据,在高保真数据较少时,依然保持了较高的建模精度。然而,已有的多保真深度神经网络模型的精度较为依赖针对模型参数的正则化调节。当添加的正则化过强时,网络对非线性关联式的拟合能力不足;当添加的正则化强度不够时,在学习多保真数据间的线性关联关系时又会出现过拟合现象。两者都会严重影响模型的预测精度。在缺乏高保真验证数据集时,较难得到最优的正则化系数。为此,通过改进已有多保真网络模型的损失函数,引入一个与线性关联式相关的参数,提出了自适应多保真数据融合的神经网络模型。该模型能根据给定数据自适应地拟合不同保真度数据间的线性或非线性关系,对正则化依赖较小,从而提高了建模的鲁棒性。在多个标准测试案例及实际应用的翼型气动参数的预测中,该模型均能表现出较高的精度和稳定性。 展开更多
关键词 深度学习 多保真深度神经网络 多保真建模 自适应多保真数据融合的神经网络模型 气动分布
下载PDF
用于单图像超分辨率的全局特征高效融合网络
3
作者 张玉波 田康 徐磊 《化工自动化及仪表》 CAS 2024年第2期207-214,300,共9页
现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅... 现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅层特征的逐级提取,并结合Transformer完成浅层与深层特征的融合利用。设计的对称自指导残差模块可以在浅层网络实现不同层间特征更具表达性的融合,同时提升网络的特征提取能力;特征互导融合模块可以增强网络对浅层特征与深层特征的融合能力,促进更多的特征信息参与到细图像重建过程。在Set5、Set14、BSD100和Urban100数据集上同近年来的经典网络(HR、CARN、IMDN、MADNet、LBNet)进行性能对比,实验结果表明:所提网络模型在峰值信噪比上有所提升,并在视觉直观对比中取得了较好的图像超分辨率效果,可改善超分辨率图像质量欠佳的问题。 展开更多
关键词 单图像超分辨率 全局特征高效融合网络模型 对称自指导残差模块 特征互导融合模块 深度学习
下载PDF
神经网络集成融合模型研究及应用 被引量:2
4
作者 张晓丹 赵海 《计算机工程》 CAS CSCD 北大核心 2007年第14期210-212,共3页
针对专家系统等单一模型解决发动机故障诊断存在的算法复杂度高、诊断准确率低等问题,提出了BP神经网络集成与DS证据推理相融合的神经集成融合模型,不仅实现了发动机不同部位的专家经验与实际观测数据的特征级融合,还实现了多个模型的... 针对专家系统等单一模型解决发动机故障诊断存在的算法复杂度高、诊断准确率低等问题,提出了BP神经网络集成与DS证据推理相融合的神经集成融合模型,不仅实现了发动机不同部位的专家经验与实际观测数据的特征级融合,还实现了多个模型的优势互补。通过对该方法和传统的专家系统方法比较得出,神经网络集成融合方法提高了7.1%的诊断准确率。 展开更多
关键词 故障诊断 神经网络集成融合模型 特征级融合 诊断准确率
下载PDF
基于Web服务的下一代网络融合业务模型 被引量:4
5
作者 赵慧玲 徐向辉 《邮电设计技术》 2008年第7期1-5,共5页
在阐明Web服务配置模型的基础上,提出了一种基于Web服务的下一代网络融合业务模型,并描述了该融合模型的具体应用场景。
关键词 下一代网络融合业务模型 WEB服务 Web服务网关
下载PDF
基于脉冲耦合神经网络融合的压缩域运动目标分割方法 被引量:1
6
作者 王慧斌 沈俊雷 +1 位作者 王鑫 张丽丽 《光子学报》 EI CAS CSCD 北大核心 2012年第8期914-921,共8页
针对H.264压缩域内运动目标分割算法所存在的弱自适应性和抗噪能力差等问题,本文提出了一种基于脉冲耦合神经网络的压缩域运动目标分割方法.该方法采用时空域矢量均值滤波对运动矢量进行预处理,减少运动目标丢失率,并设计了前后向矢量... 针对H.264压缩域内运动目标分割算法所存在的弱自适应性和抗噪能力差等问题,本文提出了一种基于脉冲耦合神经网络的压缩域运动目标分割方法.该方法采用时空域矢量均值滤波对运动矢量进行预处理,减少运动目标丢失率,并设计了前后向矢量累积方法,增强运动矢量的可靠性.基于脉冲耦合神经网络设计的融合模型可以将累积后的运动矢量和宏块模式进行融合处理,增强分割算法的抗噪能力,保证加快分割速度的同时兼顾运动区域的分割准确度.另外,采用最小交叉熵作为点火终止判断条件,实现了最佳分割模板的自适应获取.仿真实验表明,本文算法在自适应性和抗噪能力方面均有较好表现,可以准确分割出监控视频中的运动目标. 展开更多
关键词 运动目标分割 脉冲耦合神经网络融合模型 H.264压缩域 视频监控
下载PDF
保证QoS的数字家庭网络服务融合模型及算法
7
作者 李红 《计算机与网络》 2013年第12期69-73,共5页
针对计算机网络、电信网络和广播电视网络融合中存在不同类型业务间协作、互操作困难的问题,基于网络中间件的思想提出了面向数字家庭网络的三网融合服务融合模型及流程。通过测试结果表明所提出的整合模型及算法保证了组合服务的质量,... 针对计算机网络、电信网络和广播电视网络融合中存在不同类型业务间协作、互操作困难的问题,基于网络中间件的思想提出了面向数字家庭网络的三网融合服务融合模型及流程。通过测试结果表明所提出的整合模型及算法保证了组合服务的质量,能够满足面向三网融合的数字家庭网络应用需求。 展开更多
关键词 数字家庭网络三网融合服务融合服务整合算法QoS模型
下载PDF
融合GNSS气象参数的BP神经网络雾霾预测研究 被引量:6
8
作者 周永江 姚宜斌 +1 位作者 颜笑 赵存洁 《大地测量与地球动力学》 CSCD 北大核心 2019年第11期1148-1152,共5页
结合IGS中心获取的BJFS站气象参数(气温(T)、气压(P)、大气可降水量(PWV))及同期PM2.5数据,建立一种融合时序网络和回归网络的雾霾预测模型,对PM2.5浓度进行预测。研究表明,引入GNSS气象参数的融合网络模型较单一网络模型适应性强、准... 结合IGS中心获取的BJFS站气象参数(气温(T)、气压(P)、大气可降水量(PWV))及同期PM2.5数据,建立一种融合时序网络和回归网络的雾霾预测模型,对PM2.5浓度进行预测。研究表明,引入GNSS气象参数的融合网络模型较单一网络模型适应性强、准确度高,在一定精度范围内可准确预测PM2.5的变化,时效性达3h。本文结论验证了卫星导航技术应用于雾霾天气监测及预报的可行性。 展开更多
关键词 雾霾 GNSS气象参数 BP神经网络 融合网络模型
下载PDF
基于流式计算的网络排队时延预测技术研究 被引量:1
9
作者 王亮 王敏 +2 位作者 王晓鹏 罗威 冯瑜 《计算机工程》 CAS CSCD 北大核心 2020年第10期289-293,300,共6页
网络排队时延对了解网络带宽利用率与分析拥塞级别具有重要意义,而传统时延测量技术对网络流量和往返时延预测的时效性差且准确性低,容易忽略突发的网络延时变化。结合交换机内部网络排队时延的细粒度特性和多变性,提出基于LSTM模型的... 网络排队时延对了解网络带宽利用率与分析拥塞级别具有重要意义,而传统时延测量技术对网络流量和往返时延预测的时效性差且准确性低,容易忽略突发的网络延时变化。结合交换机内部网络排队时延的细粒度特性和多变性,提出基于LSTM模型的多时间尺度融合预测方法。利用带内网络遥测技术获取并转换网络细粒度参数,为预测模型提供延时和利用率特征,构建基于长短期记忆网络(LSTM)的多时间尺度融合预测模型(LSTM-Merge),将不同采样尺度数据进行融合,并采用流式计算框架对网络排队时延进行预测。实验结果表明,与LSTM、SVR等预测模型相比,LSTM-Merge模型所得预测结果的均方根误差更小,3种时间尺度融合模型较其他数目时间尺度融合模型所得预测结果的实时性更好且准确性更高。 展开更多
关键词 长短期记忆网络融合模型 网络排队时延 时间序列预测 流式计算 机器学习
下载PDF
基于迁移学习多层级融合的运动想象EEG辨识算法 被引量:5
10
作者 周强 田鹏飞 《电子测量与仪器学报》 CSCD 北大核心 2021年第12期174-181,共8页
为了准确获取运动想象脑电信号的全局特征和个体间的共性特征,进而提高其分类准确率和模型鲁棒性,提出一种参数共享迁移学习的融合卷积神经网络算法。首先把源域上训练完成的网络逐层迁移至目标网络以获取最佳迁移层。其次,在迁移层后... 为了准确获取运动想象脑电信号的全局特征和个体间的共性特征,进而提高其分类准确率和模型鲁棒性,提出一种参数共享迁移学习的融合卷积神经网络算法。首先把源域上训练完成的网络逐层迁移至目标网络以获取最佳迁移层。其次,在迁移层后分别连接不同数量的卷积-池化块构成4个不同深度的卷积网络,并将其并行融合后连接分类器得到分类结果。利用BCI竞赛IV Datasets 2a对提出方法进行实验分析。结果显示,使用100%和50%样本时所有受试者的平均辨识率分别为80.85%和78.9%,验证了提出方法在全局特征提取上的有效性小样本问题上的优势。 展开更多
关键词 运动想象脑电信号 卷积神经网络 迁移学习 多层级融合网络模型
下载PDF
基于双通道C3D的基建现场人体异常行为识别 被引量:2
11
作者 吴冬梅 卢静 蒋瑜 《信息技术与信息化》 2020年第1期28-31,共4页
异常行为识别在智能监控领域有广泛的应用前景。本文提出一种基于双通道C3D(Convolutional 3D,三维卷积)的行为识别方法,对打架、向下抛物、摔倒、跨越警戒线这四类异常行为以及走路、跑步、工作这三类正常行为进行识别。该方法的一个... 异常行为识别在智能监控领域有广泛的应用前景。本文提出一种基于双通道C3D(Convolutional 3D,三维卷积)的行为识别方法,对打架、向下抛物、摔倒、跨越警戒线这四类异常行为以及走路、跑步、工作这三类正常行为进行识别。该方法的一个通道通过提取视频的RGB图像送入C3D网络来获取静态特征;另一个通道通过提取视频的光流图像送入C3D网络来获取动态特征;最后,利用双通道网络在卷积层融合、全连接层融合、混合融合的方法将静态特征与动态特征相结合,对比实验结果表明,最优识别率达到97.7564%,证明了该网络结构在基建现场应用场景中的有效性和可行性。 展开更多
关键词 异常行为识别 深度学习 C3D卷积神经网络 网络模型融合
下载PDF
Application of neural network merging model in dam deformation analysis 被引量:5
12
作者 张帆 胡伍生 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期441-444,共4页
In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the m... In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the merging model is built based on the neural network BP algorithm and the traditional statistical model. The three models mentioned above are calculated and analyzed according to the long-term deformation observation data in Chencun Dam. The analytical results show that the average prediction accuracies of the statistical model and the BP neural network model are ~ 0.477 and +- 0.390 mm, respectively, while the prediction accuracy of the merging model is ~0. 318 mm, which is improved by 33% and 18% compared to the other two models, respectively. And the merging model has a better generalization ability and broad applicability. 展开更多
关键词 dam deformation analysis neural network statistical model merging model
下载PDF
朔黄铁路隧道衬砌表观病害检测技术 被引量:2
13
作者 王敬 王宁 +1 位作者 李健超 段培勇 《铁道建筑》 北大核心 2022年第8期122-125,共4页
为实现朔黄铁路隧道衬砌表观病害远距离非接触快速检测,提出一种基于多源数据深度融合的隧道病害检测方法。首先利用高清线阵相机、激光扫描传感器等检测设备获取隧道衬砌表观高清图像和激光点云数据,然后利用特征提取网络提取图像和点... 为实现朔黄铁路隧道衬砌表观病害远距离非接触快速检测,提出一种基于多源数据深度融合的隧道病害检测方法。首先利用高清线阵相机、激光扫描传感器等检测设备获取隧道衬砌表观高清图像和激光点云数据,然后利用特征提取网络提取图像和点云特征图,并采用空间变换方法将图像特征图投影到点云特征俯视图上得到融合特征图,最后利用候选区域网络和金字塔场景分析网络对融合特征图进行检测识别,输出病害的类型与位置信息。在朔黄铁路重点隧道开展的现场试验表明,该方法能检测隧道裂缝、掉块、渗水等表观病害状态,有效提升重载铁路隧道运维的智能化程度及综合检测水平。 展开更多
关键词 铁道隧道 病害智能检测算法 试验研究 隧道病害 深度学习 激光点云 融合网络模型
下载PDF
Power Big Data Fusion Prediction
14
作者 Liu Yan Song Yu +1 位作者 Li Gang Liang Weiqiang 《Computer Technology and Application》 2016年第3期165-171,共7页
This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a predict... This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a prediction model of multi-source information fusion for large data is established, the fusion prediction of various parameters of the same object is realized. A combined algorithm of Map Reduce and neural network is used in this paper. Using clustering and nonlinear mapping ability of neural network, it can effectively solve the problem of nonlinear objective function approximation, and neural network is applied to the prediction of fusion. In this paper, neural network model using multi layer feed forward network--BP neural network. Simultaneously, to achieve large-scale data sets in parallel computing, the parallelism and real-time property of the algorithm should be considered, further combined with Reduce Map model, to realize the parallel processing of the algorithm, making it more suitable for the study of the fusion of large data. And finally, through simulation, it verifies the feasibility of the proposed model and algorithm. 展开更多
关键词 Power big data fusion prediction Map Reduce BP neural network.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部