随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征...随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征提取网络为结构可重参网络,然后借助开源数据集训练多分支YOLOV5模型,再对多分支网络重参化得到单路网络模型,最后把Pytorch模型转化为ONNX模型,完成在无人机嵌入式端推理部署。实验表明:重参化YOLOV5模型推理速度提高3倍左右,检出率增加0.03%,召回率增加0.02%,mAP0.5增加1.22。展开更多
文摘随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征提取网络为结构可重参网络,然后借助开源数据集训练多分支YOLOV5模型,再对多分支网络重参化得到单路网络模型,最后把Pytorch模型转化为ONNX模型,完成在无人机嵌入式端推理部署。实验表明:重参化YOLOV5模型推理速度提高3倍左右,检出率增加0.03%,召回率增加0.02%,mAP0.5增加1.22。