UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we inve...UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.展开更多
Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors...Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61771488in part by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金 in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratorythe Guang Xi Universities Key Laboratory Fund of Embedded Technology and Intelligent System (Guilin University of Technology)
文摘UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208+1 种基金the Changjiang Scholars Programthe Beijing Outstanding Ph.D. Program Mentor under Grant No.20131000704
文摘Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.