期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
平均连接卷积神经网络
1
作者 折远文 蒋蓁 《工业控制计算机》 2020年第5期100-102,共3页
在图像分类研究领域,卷积神经网络以其强大的特征提取能力取得了巨大的成就。它有效利用了权值共享结构,大大降低了网络模型的复杂程度,从而成功避免了传统识别过程中复杂的特征提取和数据重建过程。但是当前深度卷积神经网络模型仍然... 在图像分类研究领域,卷积神经网络以其强大的特征提取能力取得了巨大的成就。它有效利用了权值共享结构,大大降低了网络模型的复杂程度,从而成功避免了传统识别过程中复杂的特征提取和数据重建过程。但是当前深度卷积神经网络模型仍然存在有一些问题,比如:反向传播过程中梯度消失或梯度爆炸、训练中过拟合以及网络沉余性等问题。针对上述问题,提出了一种新型的卷积神经网络模型AverageNet。本模型运用"平均连接"的思想,通过适当的跳跃连接,一方面充分利用了前面的输入数据的特征,另一方面不会出现过度的连接现象,降低了模型的参数量,提高了训练效率。网络结构在OlivettiFaces人脸数据集上进行实验,相对于目前流行的算法能够在更少的计算成本下表现出极强的性能。 展开更多
关键词 卷积神经网络 网络沉余 图像分类 梯度弥散
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部